Issue 23, 2021

Multifunctional dendritic molecular probe for selective detection of Cu2+ ions using potentiometric and fluorometric techniques

Abstract

We have designed and synthesized a multifunctional dendritic molecular probe that selectively detects Cu2+ ions via potentiometric and fluorometric techniques with low detection limits (3.5 μM in potentiometry, 15 nM in fluorometry). The selective and reversible binding of the molecule with the Cu2+ ion was used to make a solid-state microsensor (diameter of 25 μm) by incorporating the molecular probe into the carbon-based membrane as an ionophore for Cu(II). The Cu(II) microelectrode has a broad linear range of 10 μM to 1 mM with a near Nernstian slope of 30 mV/log [aCu2+] and detection limit of 3.5 μM. The Cu(II) microsensor has a fast response time (1.5 s), and it has a broad working pH range from 3.5 to 6.0. The incorporation of the hydrophobic dendritic moiety makes the ionophore less prone to leaching in an aqueous matrix for potentiometric measurement. The cinnamaldehyde component of the molecule helps detection of Cu2+ ions fluorometrically, as indicated by a change in fluorescence upon selective and reversible binding of the molecular probe to the Cu2+ ions. The strategic design of the molecular probe allows us to detect Cu2+ ions in drinking water by using this novel dendritic fluoroionophore and solid-state Cu2+ – ion-selective microelectrode.

Graphical abstract: Multifunctional dendritic molecular probe for selective detection of Cu2+ ions using potentiometric and fluorometric techniques

Supplementary files

Article information

Article type
Paper
Submitted
06 Aug 2021
Accepted
22 Sep 2021
First published
30 Sep 2021

Analyst, 2021,146, 7109-7117

Multifunctional dendritic molecular probe for selective detection of Cu2+ ions using potentiometric and fluorometric techniques

P. S. Sheet, S. Park, P. Sengupta and D. Koley, Analyst, 2021, 146, 7109 DOI: 10.1039/D1AN01417J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements