Issue 20, 2020

Assembly of graphene oxide on cotton fiber through dyeing and their properties

Abstract

Materials with electrical conductivity are preferred for electronics, medical, space and other applications. Flexible, stretchable and washable conductive fabrics have been preferred over metallic materials. However, the currently available conductive fabrics are mainly made using a dip-drying process which makes it difficult to obtain a regular assembly structure of graphene sheets on the fibers. In this research, we report the development of conductive cotton fabrics through simple dyeing, graphene oxide (GO) with two distinct sizes was used to dye the fabrics which were later reduced using hydrazine hydrate. The regularity of graphene sheets on the surface of the cotton fiber can be improved by level assembly, it is beneficial to the conductive stability of the later drawing, bending and friction process. The results show that, the fabrics coated with graphene had excellent fastness to washing, friction and bending. After 20 washings and exposure to 2000 rubbing and 1000 bending cycles, the fabrics had excellent conductivity retention of 86%, 55% and 99%, respectively. In addition, the introduction of graphene causes the dyed fabric to have good infrared absorption and excellent UV resistance. Using cotton fabrics and GO to impart conductivity and UV resistance would be an affordable, sustainable and novel approach to develop functionalized materials for various applications.

Graphical abstract: Assembly of graphene oxide on cotton fiber through dyeing and their properties

Article information

Article type
Paper
Submitted
19 Feb 2020
Accepted
17 Mar 2020
First published
24 Mar 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 11982-11989

Assembly of graphene oxide on cotton fiber through dyeing and their properties

J. Zhou, Q. Luo, P. Gao and H. Ma, RSC Adv., 2020, 10, 11982 DOI: 10.1039/D0RA01588A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements