Skip to main content
Log in

Everlasting rhodamine dyes and true deciding factors in their STED microscopy performance

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The authors took an independent and closer look at the family of red-emitting rhodamine dyes known for a decade due to their excellent performance in STED microscopy. After the family was further extended, the true grounds of this performance became clear. Small-molecule protective agents and/or auxiliary groups were attached at two different sites of the dye’s scaffold. Thus, a rhodamine core, which is already quite photostable as it is, and an intramolecular stabilizer–a 4-nitrobenzyl or a 4-nitrobenzylthio group were combined to give potentially “everlasting dyes”. The fluorescence quantum yields (Φf) and the fluorescence lifetimes (τ) of the modified dyes were thoroughly measured with comparison to those of the parent dyes. The correlation of their STED performance with photostability and fluorescence color stability under illumination in water were explored. Unexpectedly, the anaerobic GSDIM (GOC) buffer proved unhelpful with respect to STED performance. It was demonstrated that, even dyes with a Φf of only 14–17% allow STED imaging with a sufficient photon budget and good signal-to-noise ratio. For the dyes with photostabilizing groups (PSG) the Φf values are 4–5 times lower than in the reference dyes, and lifetimes τ are also strongly reduced. Noteworthy are very high fluorescence color stability and constant or even increasing fluorescence signal under photobleaching in bulk aqueous solutions, which suggests a sacrificing role of the 4-nitrobenzyl-containing moieties. Straightforward and improved recipes for “last-minute” modifications and preparations of “self-healing” red-emitting fluorescent tags are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Lavis, R. T. Raines, Bright Building Blocks for Chemical Biology, ACS Chem. Biol., 2014, 9, 855–866

    CAS  PubMed  PubMed Central  Google Scholar 

  2. J. B. Grimm, T. A. Brown, A. N. Tkachuk, L. D. Lavis, General Synthetic Method for Si-Fluoresceins and Si-Rhodamines, ACS Cent. Sci., 2017, 3, 975–985

    CAS  PubMed  PubMed Central  Google Scholar 

  3. J. B. Grimm, A. N. Tkachuk, L. Xie, H. Choi, B. Mohar, N. Falco, K. Schaefer, R. Patel, Q. Zheng, Z. Liu, J. Lippincott-Schwartz, T. A. Brown, and L. D. Lavis, A general method to optimize and functionalize red-shifted rhodamine dyes, Nat. Methods, 2020, 17, 815–821

    CAS  PubMed  PubMed Central  Google Scholar 

  4. L. D. Lavis, and R. T. Raines, Bright Ideas for Chemical Biology, ACS Chem. Biol., 2008, 3, 142–155

    CAS  PubMed  PubMed Central  Google Scholar 

  5. G. Kostiuk, J. Bucevičius, R. Gerasimaitė, and G. Lukinavičius, Application of STED imaging for chromatin studies, J. Phys. D: Appl. Phys., 2019, 52, 504003

    CAS  Google Scholar 

  6. A. Romieu, D. Brossard, M. Hamon, H. Outaabout, C. Portal, and P.-Y. Renard, Postsynthetic Derivatization of Fluorophores with r-Sulfo—alanine Dipeptide Linker. Application to the preparation of water-soluble cyanine and rhodamine dyes, Bioconjugate Chem., 2008, 19, 279–289

    CAS  Google Scholar 

  7. A. Chevalier, W. Piao, K. Hanaoka, T. Nagano, P.-Y. Renard, and A. Romieu, Azobenzene-caged sulforhodamine dyes: a novel class of ‘turn-on’ reactive probes for hypoxic tumor cell imaging, Methods Appl. Fluoresc., 2015, 3, 044004

    PubMed  Google Scholar 

  8. A. Romieu, D. Tavernier-Lohr, S. Pellet-Rostaing, M. Lemaire, and P.-Y. Renard, Water solubilization of xanthene dyes by post-synthetic sulfonationin organic media, Tetrahedron Lett., 2010, 51, 3304–3308

    CAS  Google Scholar 

  9. A. Romieu, T. Bruckdorfer, G. Clavé, V. Grandclaude, C. Massif, and P.-Y. Renard, N-Fmoc-α-sulfo-β-alanine: a versatile building block for the water solubilisation of chromophores and fluorophores by solid-phase strategy, Org. Biomol. Chem., 2011, 9, 5337–5342

    CAS  PubMed  Google Scholar 

  10. C. Massif, S. Dautrey, A. Haefele, R. Ziessel, P.-Y. Renard, and A. Romieu, New insights into the water-solubilisation offluorophores by post-synthetic “click” and Sonogashira reactions, Org. Biomol. Chem., 2012, 10, 4330–4336

    CAS  PubMed  Google Scholar 

  11. A. Chevalier, P.-Y. Renard, and A. Romieu, Straightforward Access to Water-Soluble Unsymmetrical Sulfoxanthene Dyes: Application to the Preparation of Far-Red Fluorescent Dyes with Large Stokes’ Shifts, Chem.–Eur. J., 2014, 20, 8330–8337

    CAS  PubMed  Google Scholar 

  12. K. Kolmakov, C. A. Wurm, R. Hennig, E. Rapp, S. Jakobs, V. N. Belov, and S. W. Hell, Red-Emitting rhodamines with hydroxylated, sulfonated, and phosphorylated dye residues and their use in fluorescence nanoscopy, Chem.–Eur. J., 2012, 18, 12986–12998

    CAS  PubMed  Google Scholar 

  13. K. Kolmakov, C. A. Wurm, D. N. H. Meineke, F. Göttfert, V. P. Boyarskiy, V. N. Belov, and S. W. Hell, Polar Red-Emitting Rhodamine Dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications, Chem.–Eur. J., 2014, 20, 146–157

    CAS  PubMed  Google Scholar 

  14. L. Nahidiazar, A. V. Agronskaia, J. Broertjes, B. van den Broek, and K. Jalink, Optimizing imaging conditions for demanding multi-color super resolution localization microscopy, PLoS One, 2016, 11, e0158884

    PubMed  PubMed Central  Google Scholar 

  15. M. Isselstein, L. Zhang, V. Glembockyte, O. Brix, G. Cosa, P. Tinnefeld, and T. Cordes, Self-healing dyes–keeping the promise?, J. Phys. Chem. Lett., 2020, 11, 4462–4480

    CAS  PubMed  Google Scholar 

  16. J. H. Smit, J. H. M. van der Velde, J. Huang, V. Trauschke, S. S. Henrikus, S. Chen, N. Eleftheriadis, E. M. Warszawik, A. Herrmann, and T. Cordes, On the impact of competing intra- andintermolecular triplet-state quenching onphotobleaching and photoswitching kinetics of organic fluorophores, Phys. Chem. Chem. Phys., 2019, 21, 3721–3733

    CAS  PubMed  Google Scholar 

  17. J. H. M. van der Velde, J. H. Smit, E. Hebisch, M. Punter, and T. Cordes, Self-healing dyes for super-resolution fluorescence microscopy, J. Phys. D: Appl. Phys., 2019, 52, 034001

    Google Scholar 

  18. J. H. M. van der Velde, J. Oelerich, J. Huang, A. Aminian, J. H. Smit, S. Galiani, K. Kolmakov, C. Eggeling, A. Herrmann, G. Roelfes, and T. Cordes, A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization, Nat. Commun., 2016, 7, 10144

    PubMed  PubMed Central  Google Scholar 

  19. J. H. M. van der Velde, J. J. Uusitalo, L.-J. Ugen, E. M. Warszawik, A. Herrmann, S. J. Marrink, and T. Cordes, Intramolecular photostabilizationviatriplet-state quenching: design principles to make organicfluorophores “self-healing”, Faraday Discuss., 2015, 184, 221–235

    PubMed  Google Scholar 

  20. J. H. M. van der Velde, J. Oelerich, J. Huang, J. H. Smit, M. Hiermaier, E. Ploetz, A. Herrmann, G. Roelfes, and T. Cordes, The power of two: covalent coupling of photostabilizers for fluorescence applications, J. Phys. Chem. Lett., 2014 3792–3798

    Google Scholar 

  21. Q. Zheng, S. Jockusch, Z. Zhou, R. B. Altman, J. D. Warren, N. J. Turro, and S. C. Blanchard, On the mechanisms of cyanine fluorophore photostabilization, J. Phys. Chem. Lett., 2012, 3, 2200–2203

    CAS  PubMed  PubMed Central  Google Scholar 

  22. C. A. Wurm, K. Kolmakov, F. Göttfert, S. Berning, S. Jakobs, G. Donnert, V. N. Belov, and S. W. Hell, Novel red fluorophores with superior performance in STED microscopy, Opt. Nanosc., 2012, 1, 1

    Google Scholar 

  23. Abberior GmbH, https://www.abberior.com/jtl-shop/Abberior-GmbH_s2

  24. https://www.atto-tec.com/product_info (accessed on 22.10.2020)

  25. K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, and S. W. Hell, Red–emitting rhodamine dyes for fluorescence microscopy and nanoscopy, Chem.–Eur. J., 2010, 16, 158–166

    CAS  PubMed  Google Scholar 

  26. Q. Zheng, and L. D. Lavis, Development of photostable fluorophores for molecular imaging, Curr. Opin. Chem. Biol., 2017, 39, 32–38

    CAS  PubMed  Google Scholar 

  27. F. Göttfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution, Biophys. J., 2013, 105, L01–L03

    PubMed  PubMed Central  Google Scholar 

  28. R. Schmidt, C. A. Wurm, A. Punge, A. Egner, S. Jakobs, and S. W. Hell, Mitochondrial cristae revealed with focused light, Nano Lett., 2009, 9, 2508–2510

    CAS  PubMed  Google Scholar 

  29. S. Stoldt, D. Wenzel, K. Kehrein, D. Riedel, M. Ott, and S. Jakobs, Spatial orchestration of mitochondrial translation and OXPHOS complex assembly, Nat. Cell Biol., 2018, 20, 528–534

    CAS  PubMed  Google Scholar 

  30. K. Kolmakov, E. Hebisch, T. Wolfram, L. A. Nordwig, C. A. Wurm, H. Ta, V. Westphal, V. N. Belov, and S. W. Hell, Far-red emitting fluorescent dyes for optical nanoscopy: fluorinated silicon–rhodamines (SiRF dyes) and phosphorylated oxazines, Chem.–Eur. J., 2015, 21, 13344–13356

    CAS  PubMed  Google Scholar 

  31. Y. Koide, Y. Urano, K. Hanaoka, W. Piao, M. Kusakabe, N. Saito, T. Terai, T. Okabe, and T. Nagano, Development of NIR fluorescent dyes based on Si−rhodamine for in vivo imaging, J. Am. Chem. Soc., 2012, 134, 5029–5031

    CAS  PubMed  Google Scholar 

  32. G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, and I. R. Corrêa, A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins, Nat. Chem., 2013, 5, 132–139

    PubMed  Google Scholar 

  33. Y. Kushida, T. Nagano, and K. Hanaoka, Silicon-substituted xanthene dyes and their applications in bioimaging, Analyst, 2015, 140, 685–695

    CAS  PubMed  Google Scholar 

  34. J. B. Grimm, T. Klein, B. G. Kopek, H. F. Hess, M. Sauer, L. D. Lavis, and G. Shtengel, Synthesis of a far-red photoactivatable silicon-containing rhodamine for super-resolution microscopy, Angew. Chem., Int. Ed., 2016, 55, 1723–1727

    CAS  Google Scholar 

  35. D. Hammler, A. Marx, and A. Zumbusch, Fluorescence-lifetime-sensitive probes for monitoring ATP cleavage, Chem.–Eur. J., 2018, 24, 15329–15335

    CAS  PubMed  Google Scholar 

  36. K. Rurack, and M. Spieles, Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm, Anal. Chem., 2011, 83, 1232–1242

    CAS  PubMed  Google Scholar 

  37. C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Gegner, Relative and absolute determination of fluorescence quantum yields of transparent samples, Nat. Protoc., 2013, 8, 1535–1550

    PubMed  Google Scholar 

  38. S. Ghosh, A. M. Chizhik, G. Yang, N. Karedla, I. Gregor, D. Oron, S. Weiss, J. Enderlein, and A. I. Chizhik, Excitation and emission transition dipoles of type-II semiconductor nanorods, Nano Lett., 2019, 19, 1695–1700

    CAS  PubMed  Google Scholar 

  39. S. W. Hell, V. N. Belov, K. Kolmakov, V. Westphal, M. Lauterbach, S. Jacobs, C. Wurm, C. Eggeling and C. Ringemann, (Max Planck Innovation), Novel hydrophilic and lipophilic rhodamines for labelling and imaging, EP 2253635B1, 2009

    Google Scholar 

  40. G. Y. Mitronova, S. Polyakova, C. A. Wurm, K. Kolmakov, T. Wolfram, D. N. H. Meineke, V. N. Belov, M. John, S. W. Hell, Functionalization of the meso-phenyl ring of rhodamine dyes through SNAr with sulfur nucleophiles: Synthesis, biophysical characterizations, and comprehensive NMR analysis, Eur. J. Org. Chem., 2015 337–349

    Google Scholar 

  41. C. A. Wurm, D. Neumann, R. Schmidt, A. Egner and S. Jakobs, Sample preparation for STED microscopy, in, Live Cell Imaging: Methods and Protocols, ed. D. B. Papkovsky, Humana Press, NY, 2010, pp. 185–199

    Google Scholar 

  42. T. Stephan, A. Roesch, D. Riedel, and S. Jakobs, Live-cell STED nanoscopy of mitochondrial cristae, Sci. Rep., 2019, 9, 12419

    PubMed  PubMed Central  Google Scholar 

  43. S. Jakobs, T. Stephan, P. Ilgen, and C. Brüser, Light microscopy of mitochondria at the nanoscale, Annu. Rev. Biophys., 2020, 49, 289–308

    CAS  PubMed  PubMed Central  Google Scholar 

  44. A. N. Butkevich, M. L. Bossi, G. Lukinavičius, and S. W. Hell, Triarylmethane fluorophores resistant to oxidative photobluing, J. Am. Chem. Soc., 2019, 141, 981–989

    CAS  PubMed  Google Scholar 

  45. V. N. Belov, G. Y. Mitronova, M. L. Bossi, V. P. Boyarskiy, E. Hebisch, C. Geisler, K. Kolmakov, C. A. Wurm, K. Willig, and S. W. Hell, Masked rhodamine dyes of five principal colors revealed by photolysis of a 2-diazo-1-indanone caging group: synthesis, photophysics, and light microscopy applications, Chem.–Eur. J., 2014, 20, 13162–13173

    CAS  PubMed  Google Scholar 

  46. K. Kolmakov, C. Wurm, M. V. Sednev, M. L. Bossi, V. N. Belov, and S. W. Hell, Masked red-emitting carbopyronine dyes with photosensitive2-diazo-1-indanone caging group, Photochem. Photobiol. Sci., 2012, 11, 522–532

    CAS  PubMed  Google Scholar 

  47. A. G. Griesbeck, and M. Cho, Singlet oxygen addition to homoallylic substrates in solution and microemulsion: novel secondary reactions, Tetrahedron Lett., 2009, 50, 121–123

    CAS  Google Scholar 

  48. R. von Trebra, and T. H. Koch, DABCO stabilization of coumarin dye lasers, Chem. Phys. Lett., 1982, 93, 315–317

    CAS  Google Scholar 

  49. R. J. Florijn, J. Slats, H. J. Tanke, and A. K. Raap, Analysis of antifading reagents for fluorescence microscopy, Cytometry, 1995, 19, 177–182

    CAS  PubMed  Google Scholar 

  50. W. Gong, P. Das, S. Samanta, J. Xiong, W. Pan, Z. Gu, J. Zhang, J. Qu, and Z. Yang, Redefining the photo-stability of common fluorophores with triplet state quenchers: mechanistic insights and recent updates, Chem. Commun., 2019, 55, 8695–8704

    CAS  Google Scholar 

  51. Q. Zheng, S. Jockusch, Z. Zhou, R. B. Altman, H. Zhao, W. Asher, M. Holsey, S. Mathiasen, P. Geggier, J. A. Javitch, and S. C. Blanchard, Electronic tuning of self-healing fluorophores for live-cell and single-molecule imaging, Chem. Sci., 2017, 8, 755–762

    CAS  PubMed  Google Scholar 

  52. R. B. Altman, Q. Zheng, Z. Zhou, D. S. Terry, J. D. Warren, and S. C. Blanchard, Enhanced photostability of cyanine fluorophores across the visible spectrum, Nat. Methods, 2012, 9, 428–429

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Q. Zheng, S. Jockusch, Z. Zhou, and S. C. Blanchard, The contribution of reactive oxygen species to the photobleaching of organic fluorophores, Photochem. Photobiol., 2014, 90, 448–454

    CAS  PubMed  Google Scholar 

  54. Q. Zheng, S. Jockusch, G. G. Rodríguez-Calero, Z. Zhou, H. Zhao, R. B. Altman, H. D. Abruña, and S. C. Blanchard, Intra-molecular triplet energy transfer is a general approach to improve organic fluorophore photostability, Photochem. Photobiol. Sci., 2016, 15, 196–203

    CAS  PubMed  PubMed Central  Google Scholar 

  55. P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy, Chem. Rev., 2013, 113, 119–191

    PubMed  Google Scholar 

  56. R. M. Clegg, Laboratory techniques in biochemistry and molecular biology, ed. T. W. J. Gadella, Elsevier, 2009, vol. 33, pp. 1–57

    Google Scholar 

  57. N. Kuznetsova, O. Kaliya, E. Luk’yanets, Photochemistry of laser dyes for visible region, Proc. SPIE, 1995 2619

    Google Scholar 

  58. A. N. Fletcher, M. E. Pietrak, Laser Dye Stability, Part 10. Effects of DABCO on flashlamp pumping of coumarin dyes, Appl. Phys. B, 1985, 37, 151–157

    Google Scholar 

  59. C. E. Aitken, R. A. Marshall, J. D. Puglisi, An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments, Biophys. J., 2008, 94, 1826–1835

    CAS  PubMed  PubMed Central  Google Scholar 

  60. J. H. M. van der Velde, E. Ploetz, M. Hiermaier, J. Oelerich, J. W. de Vries, G. Roelfes, T. Cordes, Mechanism of intramolecular photostabilization in self-healing cyanine fluorophores, ChemPhysChem, 2013, 14, 4084–4093

    PubMed  Google Scholar 

  61. S. S. Henrikus, K. Tassis, L. Zhang, J. H. M. van der Velde, C. Gebhardt, A. Herrmann, G. Jung, and T. Cordes, Characterization of fluorescent proteins with intramolecular photostabilization, bioRxiv, 2020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Kolmakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolmakov, K., Winter, F.R., Sednev, M.V. et al. Everlasting rhodamine dyes and true deciding factors in their STED microscopy performance. Photochem Photobiol Sci 19, 1677–1689 (2020). https://doi.org/10.1039/d0pp00304b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00304b

Navigation