Skip to main content
Log in

A photoproduct of DXCF cyanobacteriochromes without reversible Cys ligation is destabilized by rotating ring twist of the chromophore

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Cyanobacteriochrome photoreceptors (CBCRs) ligate linear tetrapyrrole chromophores via their first (canonical) Cys residue and show reversible photoconversion triggered by light-dependent Z/E isomeri-zation of the chromophore. Among the huge repertoire of CBCRs, DXCF CBCRs contain a second Cys residue within the highly conserved Asp-Xaa-Cys-Phe (DXCF) motif. In the typical receptors, the second Cys covalently attaches to the 15Z-chromophore in the dark state and detaches from the 15E-chromophore in the photoproduct state, whereas atypical ones that lack reversible ligation activity show redshifted absorption in the dark state due to a more extended π -conjugated system. Moreover, some DXCF CBCRs show blue-shifted absorption in the photoproduct state due to the twisted geometry of the rotating ring. During the process of rational color tuning of a certain DXCF CBCR, we unexpectedly found that twisted photoproducts of some variant molecules showed dark reversion to the dark state, which prompted us to hypothesize that the photoproduct is destabilized by the twisted geometry of the rotating ring. In this study, we comprehensively examined the photoproduct stability of the twisted and relaxed molecules derived from the same CBCR scaffolds under dark conditions. In the DXCF CBCRs lacking reversible ligation activity, the twisted photoproducts showed faster dark reversion than the relaxed ones, supporting our hypothesis. By contrast, in the DXCF CBCRs exhibiting reversible ligation activity, the twisted photoproducts showed no detectable photoconversion. Reversible Cys adduct formation thus results in drastic rearrangement of the protein–chromophore interaction in the photoproduct state, which would contribute to the previously unknown photoproduct stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Bussell and D. M. Kehoe, Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 12834–12839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Y. Chen, J. Zhang, J. Luo, J.-M. Tu, X.-L. Zeng, J. Xie, M. Zhou, J.-Q. Zhao, H. Scheer and K.-H. Zhao, Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics, FEBS J., 2012, 279, 40–54.

    Article  CAS  PubMed  Google Scholar 

  3. G. Enomoto, Y. Hirose, R. Narikawa and M. Ikeuchi, Thiolbased photocycle of the blue and teal light-sensing cyanobacteriochrome Tlr1999, Biochemistry, 2012, 51, 3050–3058.

    Article  CAS  PubMed  Google Scholar 

  4. K. Fushimi, T. Nakajima, Y. Aono, T. Yamamoto, Ni-Ni-Win, M. Ikeuchi, M. Sato and R. Narikawa, Photoconversion and fluorescence properties of a red/green-type cyanobacteriochrome AM1_C0023g2 that binds not only phycocyanobilin but also biliverdin, Front. Microbiol., 2016, 7, 588.

    Article  PubMed  PubMed Central  Google Scholar 

  5. K. Fushimi, N. C. Rockwell, G. Enomoto, Ni-Ni-Win, S. S. Martin, F. Gan, D. A. Bryant, M. Ikeuchi, J. C. Lagarias and R. Narikawa, Cyanobacteriochrome photoreceptors lacking the canonical Cys residue, Biochemistry, 2016, 55, 6981–6995.

    Article  CAS  PubMed  Google Scholar 

  6. K. Fushimi, G. Enomoto, M. Ikeuchi and R. Narikawa, Distinctive properties of dark reversion kinetics between two red/green-type cyanobacteriochromes and their application in the photoregulation of cAMP synthesis, Photochem. Photobiol., 2017, 93, 681–691.

    Article  CAS  PubMed  Google Scholar 

  7. M. Hasegawa, K. Fushimi, K. Miyake, T. Nakajima, Y. Oikawa, G. Enomoto, M. Sato, M. Ikeuchi and R. Narikawa, Molecular characterization of DXCF cyanobacteriochromes from the cyanobacterium Acaryochloris marina identifies a blue-light power sensor, J. Biol. Chem., 2018, 293, 1713–1727.

    Article  CAS  PubMed  Google Scholar 

  8. Y. Hirose, T. Shimada, R. Narikawa, M. Katayama and M. Ikeuchi, Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 9528–9533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y. Hirose, R. Narikawa, M. Katayama and M. Ikeuchi, Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 8854–8859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Hirose, N. C. Rockwell, K. Nishiyama, R. Narikawa, Y. Ukaji, K. Inomata, J. C. Lagarias and M. Ikeuchi, Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 4974–4979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Ishizuka, T. Shimada, K. Okajima, S. Yoshihara, Y. Ochiai, M. Katayama and M. Ikeuchi, Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1, Plant Cell Physiol., 2006, 47, 1251–1261.

    Article  CAS  PubMed  Google Scholar 

  12. Q. Ma, H.-H. Hua, Y. Chen, B.-B. Liu, A. L. Krämer, H. Scheer, K.-H. Zhao and M. Zhou, A rising tide of blueabsorbing biliprotein photoreceptors: Characterization of seven such bilin-binding GAF domains in Nostoc sp. PCC 7120, FEBS J., 2012, 279, 4095–4108.

    Article  CAS  PubMed  Google Scholar 

  13. R. Narikawa, Y. Fukushima, T. Ishizuka, S. Itoh and M. Ikeuchi, A novel photoactive GAF domain of cyanobacteriochrome AnPixJ that shows reversible green/red photoconversion, J. Mol. Biol., 2008, 380, 844–855.

    Article  CAS  PubMed  Google Scholar 

  14. R. Narikawa, T. Kohchi and M. Ikeuchi, Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr1969) of the cyanobacterium Synechocystis sp. PCC 6803, Photochem. Photobiol. Sci., 2008, 7, 1253–1259.

    Article  CAS  PubMed  Google Scholar 

  15. R. Narikawa, G. Enomoto, Ni-Ni-Win, K. Fushimi and M. Ikeuchi, A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle, Biochemistry, 2014, 53, 5051–5059.

    Article  CAS  PubMed  Google Scholar 

  16. R. Narikawa, T. Nakajima, Y. Aono, K. Fushimi, G. Enomoto, Ni-Ni-Win, S. Itoh, M. Sato and M. Ikeuchi, AA biliverdin-binding cyanobacteriochrome from the chlorophyll d–bearing cyanobacterium Acaryochloris marina, Sci. Rep., 2015, 5, 7950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. N. C. Rockwell, S. S. Martin, K. Feoktistova and J. C. Lagarias, Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. N. C. Rockwell, S. S. Martin, A. G. Gulevich and J. C. Lagarias, Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily, Biochemistry, 2012, 51, 1449–1463.

    Article  CAS  PubMed  Google Scholar 

  19. N. C. Rockwell, S. S. Martin and J. C. Lagarias, Mechanistic insight into the photosensory versatility of DXCF cyanobacteriochromes, Biochemistry, 2012, 51, 3576–3585.

    Article  CAS  PubMed  Google Scholar 

  20. N. C. Rockwell, S. S. Martin and J. C. Lagarias, Red/green cyanobacteriochromes: sensors of color and power, Biochemistry, 2012, 51, 9667–9677.

    Article  CAS  PubMed  Google Scholar 

  21. N. C. Rockwell, S. S. Martin and J. C. Lagarias, Identification of DXCF cyanobacteriochrome lineages with predictable photocycles, Photochem. Photobiol. Sci., 2015, 14, 929–941.

    Article  CAS  PubMed  Google Scholar 

  22. N. C. Rockwell, S. S. Martin and J. C. Lagarias, Identification of cyanobacteriochromes detecting far-red Light, Biochemistry, 2016, 55, 3907–3919.

    Article  CAS  PubMed  Google Scholar 

  23. N. C. Rockwell, S. S. Martin and J. C. Lagarias, There and back again: Loss and reacquisition of two-Cys photocycles in cyanobacteriochromes, Photochem. Photobiol., 2017, 93, 741–754.

    Article  CAS  PubMed  Google Scholar 

  24. L. B. Wiltbank and D. M. Kehoe, Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow, and red light, mBio, 2016, 7, e02130-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Yoshihara, M. Katayama, X. Geng and M. Ikeuchi, Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms, Plant Cell Physiol., 2004, 45, 1729–1737.

    Article  CAS  PubMed  Google Scholar 

  26. E. S. Burgie, A. N. Bussell, J. M. Walker, G. N. Phillips and R. D. Vierstra, Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome, Structure, 2013, 21, 88–97.

    Article  CAS  PubMed  Google Scholar 

  27. K. Fushimi, T. Miyazaki, Y. Kuwasaki, T. Nakajima, T. Yamamoto, K. Suzuki, Y. Ueda, K. Miyake, Y. Takeda, J.-H. Choi, H. Kawagishi, E. Y. Park, M. Ikeuchi, M. Sato and R. Narikawa, Rational conversion of chromophore selectivity of cyanobacteriochromes to accept mammalian intrinsic biliverdin, Proc. Natl. Acad.Sci. U. S. A., 2019, 116, 8301–8309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. R. Narikawa, T. Ishizuka, N. Muraki, T. Shiba, G. Kurisu and M. Ikeuchi, Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 918–923.

    Article  CAS  PubMed  Google Scholar 

  29. X. Xu, A. Port, C. Wiebeler, K.-H. Zhao, I. Schapiro and W. Gärtner, Structural elements regulating the photochromicity in a cyanobacteriochrome, Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 2432–2440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. K. Anders, G. Daminelli-Widany, M. A. Mroginski, D. von Stetten and L.-O. Essen, Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling, J. Biol. Chem., 2013, 288, 35714–35725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. S. Burgie, A. N. Bussell, J. M. Walker, K. Dubiel and R. D. Vierstra, Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10179–10184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L.-O. Essen, J. Mailliet and J. Hughes, The structure of a complete phytochrome sensory module in the Pr ground state, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 14709–14714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. K. Fushimi, M. Ikeuchi and R. Narikawa, The expanded red/green cyanobacteriochrome lineage: An evolutionary hot spot, Photochem. Photobiol., 2017, 93, 903–906.

    Article  CAS  PubMed  Google Scholar 

  34. K. Fushimi and R. Narikawa, Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum, Curr. Opin. Struct. Biol., 2019, 57, 39–46.

    Article  CAS  PubMed  Google Scholar 

  35. S. Lim, Q. Yu, S. M. Gottlieb, C.-W. Chang, N. C. Rockwell, S. S. Martin, D. Madsen, J. C. Lagarias, D. S. Larsen and J. B. Ames, Correlating structural and photochemical heterogeneity in cyanobacteriochrome NpR6012g4, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, 4387–4392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. T. Ishizuka, R. Narikawa, T. Kohchi, M. Katayama and M. Ikeuchi, Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore, Plant Cell Physiol., 2007, 48, 1385–1390.

    Article  CAS  PubMed  Google Scholar 

  37. T. Ishizuka, A. Kamiya, H. Suzuki, R. Narikawa, T. Noguchi, T. Kohchi, K. Inomata and M. Ikeuchi, The cyanobacteriochrome, TePixJ, isomerizes its own chromophore by converting phycocyanobilin to phycoviolobilin, Biochemistry, 2011, 50, 953–961.

    Article  CAS  PubMed  Google Scholar 

  38. K. Fushimi, M. Hasegawa, T. Ito, N. C. Rockwell, G. Enomoto, Ni-Ni-Win, J. C. Lagarias, M. Ikeuchi and R. Narikawa, Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold, Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 15573–15580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. N. C. Rockwell, S. S. Martin, A. G. Gulevich and J. C. Lagarias, Conserved phenylalanine residues are required for blue-shifting of cyanobacteriochrome photoproducts, Biochemistry, 2014, 53, 3118–3130.

    Article  CAS  PubMed  Google Scholar 

  40. K. Miyake, K. Fushimi, T. Kashimoto, K. Maeda, Ni-Ni-Win, H. Kimura, M. Sugishima, M. Ikeuchi and R. Narikawa, Functional diversification of two bilin reductases for light perception and harvesting in unique cyanobacterium Acaryochloris marina MBIC 11017, FEBS J., DOI: 10.1111/febs.15230.

  41. K. Mukougawa, H. Kanamoto, T. Kobayashi, A. Yokota and T. Kohchi, Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli, FEBS Lett., 2006, 580, 1333–1338.

    Article  CAS  PubMed  Google Scholar 

  42. S. Kumar, G. Stecher and K. Tamura, MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem., 2004, 25, 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  44. X.-J. Wu, H. Yang, Y. Sheng, Y.-L. Zhu and P.-P. Li, Fluorescence properties of a novel cyanobacteriochrome GAF domain from Spirulina that exhibits moderate dark reversion, Int. J. Mol. Sci., 2018, 19, 2253.

    Article  PubMed Central  CAS  Google Scholar 

  45. N. C. Rockwell, S. S. Martin, F. Gan, D. A. Bryant and J. C. Lagarias, NpR3784 is the prototype for a distinctive group of red/green cyanobacteriochromes using alternative Phe residues for photoproduct tuning, Photochem. Photobiol. Sci., 2015, 14, 258–269.

    Article  CAS  PubMed  Google Scholar 

  46. S. M. Cho, S. C. Jeoung, J.-Y. Song, J.-J. Song and Y.-I. Park, Hydrophobic residues near the bilin chromophore-binding pocket modulate spectral tuning of insert-Cys subfamily cyanobacteriochromes, Sci. Rep., 2017, 7, 40576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Blain-Hartung, N. C. Rockwell, M. V. Moreno, S. S. Martin, F. Gan, D. A. Bryant and J. C. Lagarias, Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells, J. Biol. Chem., 2018, 293, 8473–8483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O. S. Oliinyk, A. A. Shemetov, S. Pletnev, D. M. Shcherbakova and V. V. Verkhusha, Smallest nearinfrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing, Nat. Commun., 2019, 10, 279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. P. Ramakrishnan and J. J. Tabor, Repurposing synechocystis PCC6803 UirS–UirR as a UV-vioIet/green photoreversible transcriptional regulatory tool in E. coli, ACS Synth. Biol., 2016, 5, 733–740.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rei Narikawa.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/ d0pp00208a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fushimi, K., Matsunaga, T. & Narikawa, R. A photoproduct of DXCF cyanobacteriochromes without reversible Cys ligation is destabilized by rotating ring twist of the chromophore. Photochem Photobiol Sci 19, 1289–1299 (2020). https://doi.org/10.1039/d0pp00208a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00208a

Navigation