Issue 8, 2021

A reusable single-cell patterning strategy based on an ultrathin metal microstencil

Abstract

The ability to arrange distinct cells in specific, predefined patterns at single-cell resolution can have broad applications in cell-based assays and play an important role in facilitating interdisciplinary research for researchers in various fields. However, most existing methods for single-cell patterning are based on the complicated lithography-based microfabrication process, and require professional skills. Thus, exploiting convenient and universal strategies of single-cell preparation while maintaining high-throughput single-cell patterning remains a challenge. Here, we describe a simple approach for rapid and high-efficiency single-cell patterning using an ultrathin metal microstencil (UTmS) and common tools available in any laboratory. In this work, ultrathin steel microstencil plates with only 5 μm thickness could be fabricated with laser drilling and achieve single-cell prototyping on an arbitrary planar substrate under gravity-induced natural sedimentation without requiring additional fixation, reaction pools, and centrifugation procedures. In this method, the UTmS is reusable and single-cell occupancy could easily reach approximately 88% within 30 min on fibronectin-modified substrates under gravity-induced natural sedimentation, and no significant effect on cell viability was observed. To verify this method, the real-time and heterogeneous study of calcium release and apoptosis behaviors of single cells was carried out based on this new strategy. To our knowledge, it is the first time that a UTmS with 5 μm thickness is directly applied to facilitate the micropatterning of high-resolution single cells, which is valuable for researchers in different fields owing to its user-friendly operation.

Graphical abstract: A reusable single-cell patterning strategy based on an ultrathin metal microstencil

Supplementary files

Article information

Article type
Paper
Submitted
19 Nov 2020
Accepted
21 Feb 2021
First published
22 Feb 2021

Lab Chip, 2021,21, 1590-1597

A reusable single-cell patterning strategy based on an ultrathin metal microstencil

Y. Song, Q. Tian, J. Liu, W. Guo, Y. Sun and S. Zhang, Lab Chip, 2021, 21, 1590 DOI: 10.1039/D0LC01175D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements