Skip to main content

Advertisement

Log in

Efficient visible-light-driven photocatalytic hydrogen production over a direct Z-scheme system of TaON/Cd0.5Zn0.5S with a NiS cocatalyst

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this work, a series of samples of Cd0.5Zn0.5S (ZCS) nanoparticles decorated with porous TaON were successfully prepared as a direct Z-scheme system. The photocatalytic evolution of H2 with a high efficiency was explored using NiS decorated with TaON sensitized ZCS nanocomposites (NiS-TaON/ZCS) and Na2SO3/Na2S as sacrificial reagents. The results showed that 0.5 wt% NiS deposited on the surface of 4 wt% TaON-ZCS nanocomposites could reach the highest photocatalytic H2 evolution rate of 34.8 mmol h‒1 g‒1 with a maximum quantum yield of about 25.5% under 420 nm monochromatic light. The activity of the TaON-ZCS photocatalyst for photocatalytic H2 evolution is higher than that of either pure ZCS or TaON. This high photocatalytic performance is ascribed firstly to the hierarchical structure of the coupled semiconductor system and secondly to the efficient transfer and separation of photogenerated charge carriers with NiS as a cocatalyst, which could serve as an electron collector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. Y. Tachibana, L. Vayssieres and J. R. Durrant, Nat. Photonics, 2012, 6, 511–518.

    Article  CAS  Google Scholar 

  2. L. Hammarström and S. Hammes-Schiffer, Acc. Chem. Res., 2009, 42, 1859–1860.

    Article  PubMed  CAS  Google Scholar 

  3. Y. D. Hou, B. L. Abrams, P. C. K. Vesborg, et al., Nat. Mater., 2011, 10, 434–438.

    Article  CAS  PubMed  Google Scholar 

  4. S. Okunaka, H. Tokudome and R. Abe, J. Mater. Chem. A, 2015, 3, 14794–14800.

    Article  CAS  Google Scholar 

  5. X. Xu, G. Liu, C. Randorn and J. T. S. Irvine, Int. J. Hydrogen Energy, 2011, 36, 13501–13507.

    Article  CAS  Google Scholar 

  6. S. Y. Dong, J. L. Feng, Y. K. Li, L. M. Hu, M. L. Liu, Y. F. Wang, Y. Q. Pi, J. Y. Sun and J. H. Sun, Appl. Catal. B: Environ., 2014, 152–153, 413–424.

  7. S. Y. Dong, Y. R. Cui, Y. F. Wang, Y. K. Li, L. M. Hu, J. Y. Sun and J. H. Sun, Chem. Eng. J., 2014, 249, 102–110.

    Article  CAS  Google Scholar 

  8. T. Li, L. Zhao, Y. He, J. Cai, M. Luo and J. Lin, Appl. Catal., B, 2013, 129, 255–263.

    Article  CAS  Google Scholar 

  9. H. Xiao, W. Wang, G. Liu, Z. Chen, K. Lv and J. Zhu, Appl. Surf. Sci., 2015, 358, 313–318.

    Article  CAS  Google Scholar 

  10. L. J. Zhang, S. Li, B. K. Liu, D. J. Wang and T. F. Xie, ACS Catal., 2014, 4, 3724–3729.

    Article  CAS  Google Scholar 

  11. M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi and K. Domen, Catal. Today, 2003, 78, 555–560.

    Article  CAS  Google Scholar 

  12. Y. Moriya, T. Takata and K. Domen, Coord. Chem. Rev., 2013, 257, 1957–1969.

    Article  CAS  Google Scholar 

  13. K. Maeda, M. Higashi, D. L. Lu, R. Abe and K. Domen, J. Am. Chem. Soc., 2010, 132, 5858–5868.

    Article  CAS  PubMed  Google Scholar 

  14. K. Maeda, R. Abe and K. Domen, J. Phys. Chem. C, 2011, 115, 3057–3064.

    Article  CAS  Google Scholar 

  15. Q. T. Han, Y. Zhou, L. Q. Tang, P. Li, W. G. Tu, L. Li and Z. G. Zou, RSC Adv., 2016, 6, 90792–90796.

    Article  CAS  Google Scholar 

  16. F. X. Zhang, A. Yamakata, K. Maeda, Y. Moriya, T. Takata, J. Kubota, K. Teshima, S. Oishi and K. Domen, J. Am. Chem. Soc., 2012, 134, 8348–8351.

    Article  CAS  PubMed  Google Scholar 

  17. K. Maeda, M. Higashi, B. Siritanaratkul, R. Abe and K. Domen, J. Am. Chem. Soc., 2011, 133, 12334–12337.

    Article  CAS  PubMed  Google Scholar 

  18. X. J. Sun, F. Wang, J. Z. Pan, G. Bai and N. Liu, Mater. Sci. Technol., 2007, 06, 1005.

  19. S. J. Li, S. W. Hu, W. Jiang, Y. Liu, J. S. Liu and Z. H. Wang, Mol. Catal., 2017, 435, 135–143.

    Article  CAS  Google Scholar 

  20. J. G. Hou, Z. Wang, R. Cao, S. Q. Jiao and H. M. Zhu, Dalton Trans., 2011, 40, 4038–4041.

    Article  CAS  PubMed  Google Scholar 

  21. R. Abe, T. Takata, H. Sugihara and K. Domen, Chem. Commun., 2005, 3829–3831.

  22. M. Hara, T. Takata, J. N. Kondo and K. Domen, Catal. Today, 2004, 90, 313–317.

    Article  CAS  Google Scholar 

  23. X. Wu, J. Zhao, L. Wang, M. Han, M. Zhang, H. Wang, H. Huang, Y. Liu and Z. Kang, Appl. Catal., B, 2017, 206, 501–509.

    Article  CAS  Google Scholar 

  24. H. Tada, T. Mitsui, T. Kiyonaga, T. Akita and K. Tanaka, Nat. Mater., 2006, 5, 782–786.

    Article  CAS  PubMed  Google Scholar 

  25. Y. Sasaki, A. Iwase, H. Kato and A. Kudo, J. Catal., 2008, 259, 133–137.

    Article  CAS  Google Scholar 

  26. K. Iwashina, A. Iwase, Y. H. Ng, R. Amal and A. Kudo, J. Am. Chem. Soc., 2015, 137, 604–607.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan and W. Shi, Appl. Catal., B, 2016, 180, 663–673.

    Article  CAS  Google Scholar 

  28. L. Ye, J. Liu, C. Gong, L. Tian, T. Peng and L. Zan, ACS Catal., 2012, 2, 1677–1683.

    Article  CAS  Google Scholar 

  29. Y. Zhu, Z. Chen, T. Gao, Q. Huang, F. Niu, L. Qin, P. Tang, Y. Huang, Z. Sha and Y. Wang, Appl. Catal., B, 2015, 163, 16–22.

    Article  CAS  Google Scholar 

  30. X. Ma, Q. Jiang, W. Guo, M. Zheng, W. Xu, F. Ma and B. Hou, RSC Adv., 2016, 6, 28263–28269.

    Article  CAS  Google Scholar 

  31. Y. X. Tang, D. Z. Kong, X. T. Wang, Y. X. Ma, C. H. Su, X. P. Pu and Y. l. Geng, Nanotechnology, 2019, 30, 475704.

  32. K. L. He, J. Xie, X. Y. Luo, J. Q. Wen, S. Ma, X. Li, Y. P. Fang and X. C. Zhang, Chin. J. Catal., 2017, 38, 240–252.

    Article  CAS  Google Scholar 

  33. D. D. Ren, W. N. Zhang, Y. N. Ding, R. C. Shen, Z. M. Jiang, X. Y. Lu and X. Li, Sol. RRL, 2019, 1900423.

  34. Y. X. Tang, X. S. Li, D. F. Zhang, X. P. Pu, B. Ge and Y. L. Huang, Mater. Res. Bull., 2019, 110, 214–222.

    Article  CAS  Google Scholar 

  35. Y. X. Tang, D. F. Zhang, X. X. Qiu, L. Zeng, B. X. Huang, H. Li, X. P. Pu and Y. l. Geng, J. Alloys Compd., 2019, 809, 151855.

  36. Y. X. Tang, X. Zhang, Y. X. Ma, X. T. Wang, C. H. Su, D. F. Zhang, X. P. Pu and Y. L. Geng, Sep. Purif. Technol., 2020, 230, 115896.

  37. D. D. Ren, R. C. Shen, Z. M. Jiang, X. Y. Lu and X. Li, Chin. J. Catal., 2020, 41, 31–40.

    Article  CAS  Google Scholar 

  38. Y. B. Chen and L. J. Guo, J. Mater. Chem., 2012, 22, 7507–7514.

    Article  CAS  Google Scholar 

  39. J. Song, H. Zhao, R. Sun, X. Li and D. Sun, Energy Environ. Sci., 2016, 10, 225–235.

    Article  CAS  Google Scholar 

  40. K. Zhang, D. Jing, C. Xing and L. Guo, Int. J. Hydrogen Energy, 2007, 32, 4685.

  41. S. Q. Peng, Y. Yang, J. N. Tan, C. Gan and Y. X. Li, Appl. Surf. Sci., 2018, 447, 822–828.

    Article  CAS  Google Scholar 

  42. H. Du, H. L. Guo, Y. N. Liu, X. Xie, K. Liang, X. Zhou, X. Wang and A. W. Xu, ACS Appl. Mater. Interfaces, 2016, 8, 4023–4030.

    Article  CAS  PubMed  Google Scholar 

  43. K. He, J. Xie, M. Li and X. Li, Appl. Surf. Sci., 2018, 430, 208–217.

    Article  CAS  Google Scholar 

  44. S. Ma, X. Xu, J. Xie and X. Li, Chin. J. Catal., 2017, 38, 1970–1980.

    Article  CAS  Google Scholar 

  45. N. Li, B. Zhou, P. Guo, J. Zhou and D. Jing, Int. J. Hydrogen Energy, 2013, 38, 11268–11277.

    Article  CAS  Google Scholar 

  46. P. Wang, S. Q. Xu, F. Chen and H. G. Yu, Chin. J. Catal., 2019, 40, 343–351.

    Article  CAS  Google Scholar 

  47. B. Q. Wang, Y. Ding, Z. R. Deng and Z. H. Li, Chin. J. Catal., 2019, 40, 335–342.

    Article  CAS  Google Scholar 

  48. S. Cao, Y. Chen, C. J. Wang, X. J. Lv and W. F. Fu, Chem. Commun., 2015, 51, 8708–8711.

    Article  CAS  Google Scholar 

  49. P. F. Wang, S. H. Zhan, H. T. Wang, Y. G. Xia, Q. L. Hou, Q. X. Zhou, Y. Li and R. R. Kumar, Appl. Catal., B, 2018, 230, 210–219.

    Article  CAS  Google Scholar 

  50. Z. B. Jin, T. T. Wei, L. X. Li, F. Y. Li, R. Tao and L. Xu, Dalton Trans., 2019, 48, 2676–2682.

    Article  CAS  PubMed  Google Scholar 

  51. X. J. Zhao, J. J. Yu, H. D. Cui and T. H. Wang, J. Photochem. Photobiol., A, 2017, 335, 130–139.

    Article  CAS  Google Scholar 

  52. T. M. Di, Q. L. Xu, W. K. Ho, H. Tang, Q. J. Xiang and J. G. Yu, ChemCatChem, 2019, 11, 1394–1411.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available: Additional EDS figures and SEM mapping figures of T4-ZCS. See DOI: 10.1039/c9pp00427k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Jin, Z., Li, F. et al. Efficient visible-light-driven photocatalytic hydrogen production over a direct Z-scheme system of TaON/Cd0.5Zn0.5S with a NiS cocatalyst. Photochem Photobiol Sci 19, 80–87 (2020). https://doi.org/10.1039/c9pp00427k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00427k

Navigation