Skip to main content
Log in

Conical intersections and the weak fluorescence of betalains

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Betalains are natural plant pigments found in certain plants belonging to the order Caryophyllales. This work presents theoretical calculations on the excited state properties of three betalains: betanin, an almost non-fluorescent natural betacyanin; indicaxanthin, a weakly fluorescent natural betaxanthin; and cBeet120, a synthetic betaxanthin fluorescence probe that is also weakly fluorescent. Calculations at the algebraic diagrammatic construction (ADC (2)) level of theory, combined with the conductor-like screening model (COSMO) to simulate solvent effects, predict absorption spectra in good agreement with experiment for all three of these betalains. Several distinct theoretical approaches identify torsions of the molecular geometry that can lead to conical intersections between the excited singlet (S1) and ground state (S0) potential surfaces and identify probable geometries at the minimum on the crossing seam (MXS). The present results thus emphasize the central role played by torsional modes in determining the fluorescence properties of natural betalains and of most synthetic betalain analogs as well. A direct implication of the results is that the fluorescence quantum yields of natural or synthetic betalains can potentially be enhanced by introducing structural modifications that permit the molecule to avoid these MXS geometries and/or by incorporation into a more rigid environment that hinders the specific bond rotations involved in the non-radiative relaxation of the excited state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Gould and D. W. Lee, Anthocyanins in Leaves, Academic Press, New York, 2002.

    Google Scholar 

  2. Y. Tanaka, N. Sasaki and A. Ohmiya, Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids., Plant J., 2008, 54, 733–749.

    Article  CAS  PubMed  Google Scholar 

  3. G. Jain and K. S. Gould, Are betalain pigments the functional homologues of anthocyanins in plants?, Environ. Exp. Bot., 2015, 119, 48–53.

    Article  CAS  Google Scholar 

  4. N. N. Harris, J. Javellana, K. M. Davies, D. H. Lewis, P. E. Jameson, S. C. Deroles, K. E. Calcott, K. S. Gould and K. E. Schwinn, Betalain production is possible in anthocyanin producing plant species given the presence of DOPA-dioxygenase and L-DOPA, BMC Plant Biol., 2012, 12, 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Gengatharan, G. A. Dykes and W. S. Choo, Betalains: Natural plant pigments with potential application in functional foods, LWT – Food Sci. Technol., 2015, 64, 645–649.

    Article  CAS  Google Scholar 

  6. M. I. Khan and P. Giridhar, Plant betalains: Chemistry and biochemistry, Phytochemistry, 2015, 117, 267–295.

    Article  CAS  PubMed  Google Scholar 

  7. M. I. Khan, Stabilization of betalains: A review, Food Chem., 2016, 197, 1280–1285.

    Article  CAS  PubMed  Google Scholar 

  8. I. B. Slimen, T. Najar and M. Abderrabba, Chemical and Antioxidant Properties of Betalains, J. Agric. Food Chem., 2017, 65, 675–689.

    Article  CAS  Google Scholar 

  9. F. H. Bartoloni, L. C. P. Goncalves, A. C. B. Rodrigues, F. A. Dörr, E. Pinto and E. L. Bastos, Photophysics and hydrolytic stability of betalains in aqueous trifluoroethanol, Monatsh. Chem., 2013, 144, 567–571.

    Article  CAS  Google Scholar 

  10. F. H. Quina and E. L. Bastos, Chemistry Inspired by the Colors of Fruits, Flowers and Wine, Ann. Acad. Bras. Cienc., 2018, 90, 681–695.

    Article  CAS  Google Scholar 

  11. F. Gandîa-Herrero, J. Escribano and F. Garcfa-Carmona, Structural implications on color, fluorescence, and antiradical activity in betalains, Planta, 2010, 232, 449–460.

    Article  PubMed  CAS  Google Scholar 

  12. M. Wendel, S. Nizinski, D. Prukala, M. Sikorski, S. Wybraniec and G. Burdzinski, Ultrafast internal conversion in neobetanin in comparison to betacyanins, J. Photochem. Photobiol., A, 2017, 332, 602–610.

    Article  CAS  Google Scholar 

  13. E. B. Rodriguez, M. L. P. Vidallon, D. J. Mendoza and C. T. Reyes, Health-promoting bioactivities of betalains from red dragon fruit (Hylocereus polyrhizus (Weber) Britton and Rose) peels as affected by carbohydrate encapsulation, J. Sci. Food Agric., 2016, 96, 4679–4689.

    Article  CAS  PubMed  Google Scholar 

  14. R. L. Jackman and J. L. Smith, in Natural Food Colorants, ed. G. F. Hendry and J. D. Houghton, Blackie Academic & Professional, London, 1996, ch. 8, pp. 244–309, DOI: 10.1007/978-1-4615-2155-6.

  15. T. Esatbeyoglu, A. E. Wagner, V. B. Schini-Kerth and G. Rimbach, Betanin-A food colorant with biological activity, Mol. Nutr. Food Res., 2015, 59, 36–47.

    Article  CAS  PubMed  Google Scholar 

  16. M. I. Khan, Plant Betalains: Safety, Antioxidant Activity, Clinical Efficacy, and Bioavailability, Compr. Rev. Food Sci. Food Saf., 2016, 15, 316–330.

    Article  CAS  PubMed  Google Scholar 

  17. F. Gandía-Herrero, J. Escribano and F. García-Carmona, Biological Activities of Plant Pigments Betalains, Crit. Rev. Food Sci. Nutr., 2016, 56, 937–945.

    Article  PubMed  CAS  Google Scholar 

  18. L. Tesoriere, D. Butera, D. D’Arpa, F. Di Gaudio, M. Allegra, C. Gentile and M. A. Livrea, Increased resistance to oxidation of betalain-enriched human low density lipoproteins, Free Radical Res., 2003, 37, 689–696.

    Article  CAS  Google Scholar 

  19. L. Tesoriere, M. Allegra, D. Butera, C. Gentile and M. A. Livrea, Cytoprotective effects of the antioxidant phytochemical indicaxanthin in β-thalassemia red blood cells, Free Radical Res., 2006, 40, 753–761.

    Article  CAS  Google Scholar 

  20. L. Nowacki, P. Vigneron, L. Rotellini, H. Cazzola, F. Merlier, E. Prost, R. Ralanairina, J.-P. Gadonna, C. Rossi and M. Vayssade, Betanin-Enriched Red Beetroot (Beta vulgaris L.) Extract Induces Apoptosis and Autophagic Cell Death in MCF-7 Cells, Phytother. Res., 2015, 29, 1964–1973.

    Article  CAS  PubMed  Google Scholar 

  21. S. S. Kumar, P. Manoj, P. Giridhar, R. Shrivastava and M. Bharadwaj, Fruit extracts of Basella rubra that are rich in bioactives and betalains exhibit antioxidant activity and cytotoxicity against human cervical carcinoma cells, J. Funct. Foods, 2015, 15, 509–515.

    Article  CAS  Google Scholar 

  22. M. L. T. Liveri, L. Sciascia, M. Allegra, L. Tesoriere and M. A. LivreaI, Partition of indicaxanthin in membrane biomimetic systems. A kinetic and modeling approach, J. Agric. Food Chem., 2009, 57, 10959–10963.

    Article  CAS  Google Scholar 

  23. L. C. P. Gonçalves, M. A. D. Trassi, N. B. Lopes, F. A. Dörr, M. T. dos Santos, W. J. Baader, V. X. Oliveira and E. L. Bastos, A comparative study of the purification of betanin, Food Chem., 2012, 131, 231–238.

    Article  CAS  Google Scholar 

  24. J. Chandrasekhar, G. Sonika, M. C. Madhusudhan and K. S. M. S. Raghavarao, Differential partitioning of betacyanins and betaxanthins employing aqueous two phase extraction, J. Food Eng., 2015, 144, 156–163.

    Article  CAS  Google Scholar 

  25. G. A. Cardoso-Ugarte, M. E. Sosa-Morales, T. Ballard, A. Liceaga and M. F. S. Martín-González, Microwaveassisted extraction of betalains from red beet (Beta vulgaris), LWT – Food Sci. Technol., 2014, 59, 276–282.

    Article  CAS  Google Scholar 

  26. G. B. Celli and M. S.-L. Brooks, Impact of extraction and processing conditions on betalains and comparison of properties with anthocyanins - A current review, Food Res. Int., 2017, 100, 501–509.

    Article  CAS  PubMed  Google Scholar 

  27. H. M. C. d. Azeredo, A. C. Pereira, A. C. R. d. Souza, S. T. Gouveia and K. C. B. Mendes, Study on efficiency of betacyanin extraction from red beetroots, Int. J. Food Sci. Technol., 2009, 44, 2464–2469.

    Article  CAS  Google Scholar 

  28. T. Sawicki, M. Surma, H. Zielinski and W. Wiczkowski, Development of a new analytical method for the determination of red beetroot betalains using dispersive solidphase extraction, J. Sep. Sci., 2016, 39, 2986–2994.

    Article  CAS  PubMed  Google Scholar 

  29. A. Slatnar, F. Stampar, R. Veberic and J. Jakopic, HPLC-MS (n) Identification of Betalain Profile of Different Beetroot (Beta vulgaris, L. ssp. vulgaris) Parts and Cultivars, J. Food Sci., 2015, 80, C1952–C1958.

    Article  PubMed  CAS  Google Scholar 

  30. S. S. Kumar, P. Manoj, N. P. Shetty, M. Prakash and P. Giridhar, Characterization of major betalain pigments -gomphrenin, betanin and isobetanin from Basella rubra L. fruit and evaluation of efficacy as a natural colourant in product (ice cream) development, J. Food Sci. Technol., 2015, 52, 4994–5002.

    Article  CAS  PubMed  Google Scholar 

  31. S. Chethana, C. A. Nayak and K. S. M. S. Raghavarao, Aqueous two phase extraction for purification and concentration of betalains, J. Food Eng., 2007, 81, 679–687.

    Article  CAS  Google Scholar 

  32. J. A. Fernández-López and L. Almela, Application of high-performance liquid chromatography to the characterization of the betalain pigments in prickly pear fruits, J. Chromatogr. A, 2001, 913, 415–420.

    Article  PubMed  Google Scholar 

  33. M. R. Mosshammer, C. Maier, F. C. Stintzing and R. Carle, Impact of thermal treatment and storage on color of yellow-orange cactus pear (Opuntia ficus-indica [L] Mill. cv. ‘Gialla’) juices, J. Food Sci., 2006, 71, C400–C406.

    Article  CAS  Google Scholar 

  34. K. Ravichandran, R. Palaniraj, N. M. M. T. Saw, A. M. M. Gabr, A. R. Ahmed, D. Knorr and I. Smetanska, Effects of different encapsulation agents and drying process on stability of betalains extract, J. Food Sci. Technol., 2014, 51, 2216–2221.

    Article  CAS  PubMed  Google Scholar 

  35. M. J. Cejudo-Bastante, N. Hurtado, N. Mosquera and F. J. Heredia, Potential use of new Colombian sources of betalains. Color stability of ulluco (Ullucus tuberosus) extracts under different pH and thermal conditions, Food Res. Int., 2014, 64, 465–471.

    Article  CAS  PubMed  Google Scholar 

  36. O. Guneser, Pigment and color stability of beetroot betalains in cow milk during thermal treatment, Food Chem., 2016, 196, 220–227.

    Article  CAS  PubMed  Google Scholar 

  37. J. A. Rodríguez-Sánchez, M. T. Cruz y Victoria and B. E. Barragán-Huerta, Betaxanthins and antioxidant capacity in Stenocereus pruinosus: Stability and use in food, Food Res. Int., 2017, 91, 63–71.

    Article  PubMed  CAS  Google Scholar 

  38. G. Calogero, A. Bartolotta, G. Di Marco, A. Di Carlo and F. Bonaccorso, Vegetable-based dye-sensitized solar cells, Chem. Soc. Rev., 2015, 44, 3244–3294.

    Article  CAS  PubMed  Google Scholar 

  39. N. A. Treat, F. J. Knorr and J. L. McHale, Templated Assembly of Betanin Chromophore on TiO2: Aggregation-Enhanced Light-Harvesting and Efficient Electron Injection in a Natural Dye-Sensitized Solar Cell, J. Phys. Chem. C, 2016, 120, 9122–9131.

    Article  CAS  Google Scholar 

  40. R. Ramamoorthy, N. Radha, G. Maheswari, S. Anandan, S. Manoharan and R. V. Williams, Betalain and anthocyanin dye-sensitized solar cells, J. Appl. Electrochem., 2016, 46, 929–941.

    Article  CAS  Google Scholar 

  41. M. Wendel, A. Kumorkiewicz, S. Wybraniec, M. Ziółek and G. Burdziński, Impact of S 1 →S 0 internal conversion in betalain-based dye sensitized solar cells, Dyes Pigm., 2017, 141, 306–315.

    Article  CAS  Google Scholar 

  42. M. V. Pavliuk, A. B. Fernandes, M. Abdellah, D. L. A. Fernandes, C. O. Machado, I. Rocha, Y. Hattori, C. Paun, E. L. Bastos and J. Sá, Nano-hybrid plasmonic photocatalyst for hydrogen production at 20% efficiency, Sci. Rep., 2017, 7, 8670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. M. V. Pavliuk, A. M. Cieślak, M. Abdellah, A. Budinská, S. Pullen, K. Sokołowski, D. L. A. Fernandes, J. Szlachetko, E. L. Bastos, S. Ott, L. Hammarström, T. Edvinsson, J. Lewiński and J. Sá, Hydrogen evolution with nanoengineered ZnO interfaces decorated using a beetroot extract and a hydrogenase mimic, Sustainable Energy Fuels, 2017, 1, 69–73.

    Article  CAS  Google Scholar 

  44. A. Driks, L. C. P. Gonçalves, S. M. Silva, P. C. Derose, R. A. Ando and E. L. Bastos, Beetroot-Pigment-Derived Colorimetric Sensor for Detection of Calcium Dipicolinate in Bacterial Spores, PLoS One, 2013, 8, e73701.

    Article  CAS  Google Scholar 

  45. D. L. A. Fernandes, C. Paun, M. V. Pavliuk, A. B. Fernandes, E. L. Bastos and J. Sá, Green microfluidic synthesis of monodisperse silver nanoparticles via genetic algorithm optimization, RSC Adv., 2016, 6, 95693–95697.

    Article  CAS  Google Scholar 

  46. A. Gliszczyńska-Świgło, H. Szymusiak and P. Malinowska, Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity, Food Addit. Contam., 2006, 23, 1079–1087.

    Article  PubMed  CAS  Google Scholar 

  47. G. A. Molina, A. R. Hernández-Martínez, M. Cortez-Valadez, F. García-Hernández and M. Estevez, Effects of Tetraethyl Orthosilicate (TEOS) on the Light and Temperature Stability of a Pigment from Beta vulgaris and Its Potential Food Industry Applications, Molecules, 2014, 19, 17985–18002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. C. I. Oprea, A. Dumbrava, I. Enache, A. Georgescu and M. A. Girtu, A combined experimental and theoretical study of natural betalain pigments used in dye-sensitized solar cells, J. Photochem. Photobiol., A, 2012, 240, 5–13.

    Article  CAS  Google Scholar 

  49. C. Y. Qin and A. E. Clark, DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells, Chem. Phys. Lett., 2007, 438, 26–30.

    Article  CAS  Google Scholar 

  50. L. C. P. Gonçalves, R. R. Tonelli, P. Bagnaresi, R. A. Mortara, A. G. Ferreira and E. L. Bastos, A natureinspired betalainic probe for live-cell imaging of Plasmodium-infected erythrocytes, PLoS One, 2013, 8, e53874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. A. C. B. Rodrigues, I. F. A. Mariz, E. M. S. Maçoas, R. R. Tonelli, J. M. G. Martinho, F. H. Quina and E. L. Bastos, Bioinspired water-soluble two-photon fluorophores, Dyes Pigm., 2018, 150, 105–111.

    Article  CAS  Google Scholar 

  52. W. Domcke, D. R. Yarkony and H. Köppel, Conical intersections: theory, computation and experiment, World Scientific, 2011.

  53. D. Wolfgang and K. Horst, Conical intersections: electronic structure, dynamics & spectroscopy, World Scientific, 2004.

  54. S. Niziński, M. Wendel, M. F. Rode, D. Prukała, M. Sikorski, S. Wybraniec and G. Burdziński, Photophysical properties of betaxanthins: miraxanthin V – insight into the excited-state deactivation mechanism from experiment and computations, RSC Adv., 2017, 7, 6411–6421.

    Article  Google Scholar 

  55. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  56. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 2010, 132, 154104.

    Article  CAS  PubMed  Google Scholar 

  57. C. Moller and M. S. Plesset, Note on an approximation treatment for many-electron systems, Phys. Rev., 1934, 46, 0618–0622.

    Article  CAS  Google Scholar 

  58. A. Schafer, H. Horn and R. Ahlrichs, Fully Optimized Contracted Gaussian-Basis Sets for Atoms Li to Kr, J. Chem. Phys., 1992, 97, 2571–2577.

    Article  Google Scholar 

  59. F. Weigend, M. Häser, H. Patzelt and R. Ahlrichs, RI-MP2: optimized auxiliary basis sets and demonstration of efficiency, Chem. Phys. Lett., 1998, 294, 143–152.

    Article  CAS  Google Scholar 

  60. A. Klamt and V. Jonas, Treatment of outlying charge in continuum solvation models, J. Chem. Phys., 1996, 105, 9972–9981.

    Article  CAS  Google Scholar 

  61. C. Hattig, Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2), Adv. Quantum Chem., 2005, 50, 37–60.

    Article  CAS  Google Scholar 

  62. C. Hättig, Geometry optimizations with the coupled-cluster model CC2 using the resolution-of-the-identity approximation, J. Chem. Phys., 2003, 118, 7751–7761.

    Article  CAS  Google Scholar 

  63. A. Schafer, C. Huber and R. Ahlrichs, Fully Optimized Contracted Gaussian-Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr, J. Chem. Phys., 1994, 100, 5829–5835.

    Article  Google Scholar 

  64. J.-F. Cote, D. Brouillette, J. E. Desnoyers, J.-F. Rouleau, J.-M. St-Arnaud and G. Perron, Dielectric Constants of Acetonitrile, Butyrolactone, Propylene Carbonate, and 1,2-Dimethoxyethane as a Function of Pressure and Temperature, J. Solution Chem., 1996, 25, 1163–1173.

    Article  CAS  Google Scholar 

  65. J. Wyman, Measurements of the Dielectric Constants of Conducting Media, Phys. Rev., 1930, 35, 623–634.

    Article  CAS  Google Scholar 

  66. F. Plasser and H. Lischka, Analysis of Excitonic and Charge Transfer Interactions from Quantum Chemical Calculations, J. Chem. Theory Comput., 2012, 8, 2777–2789.

    Article  CAS  PubMed  Google Scholar 

  67. F. Plasser, M. Wormit and A. Dreuw, New tools for the systematic analysis and visualization of electronic excitations. I. Formalism, J. Chem. Phys., 2014, 141, 024106.

    Article  PubMed  CAS  Google Scholar 

  68. F. Plasser, S. A. Bappler, M. Wormit and A. Dreuw, New tools for the systematic analysis and visualization of electronic excitations. II. Applications, J. Chem. Phys., 2014, 141, 024107.

    Article  PubMed  CAS  Google Scholar 

  69. R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, Electronic structure calculations on workstation computers: The program system turbomole, Chem. Phys. Lett., 1989, 162, 165–169.

    Article  CAS  Google Scholar 

  70. M. Dallos, H. Lischka, R. Shepard, D. R. Yarkony and P. G. Szalay, Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. II. Minima on the crossing seam: formaldehyde and the photodimerization of ethylene., J. Chem. Phys., 2004, 120, 7330–7339.

    Article  CAS  PubMed  Google Scholar 

  71. P. C. Hariharan and J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, Theor. Chim. Acta, 1973, 28, 213–222.

    Article  CAS  Google Scholar 

  72. C. M. Marian, A. Heil and M. Kleinschmidt, The DFT/MRCI method, WIREs Comput. Mol. Sci., 2019, 9, e1394.

    Article  CAS  Google Scholar 

  73. S. Grimme and M. Waletzke, A combination of Kohn–Sham density functional theory and multi-reference configuration interaction methods., J. Chem. Phys., 1999, 111, 5645–5655.

    Article  CAS  Google Scholar 

  74. I. Lyskov, M. Kleinschmidt and C. M. Marian, Redesign of the DFT/MRCI Hamiltonian, J. Chem. Phys., 2016, 144, 034104.

    Article  PubMed  CAS  Google Scholar 

  75. H. Lischka, R. Shepard, I. Shavitt, R. Pitzer, M. Dallos, T. Muller, P. Szalay, G. F. Brown, R. Ahlrichs, H. J. Boehm, A. Chang, D. Comeau, R. Gdanitz, H. Dachsel, C. Ehrhardt, M. Ernzerhof, P. Hochtl, S. Irle, G. Kedziora, T. Kovar, V. Parasuk, M. Pepper, P. Scharf, H. Schiffer, M. Schindler, M. Schuler, M. Seth, E. Stahlberg, J.-G. Zhao, S. Yabushita, Z. Zhang, M. Barbatti, S. Matsika, M. Schuurmann, D. Yarkony, S. Brozell, E. Beck, J.-P. Blaudeau, M. Ruckenbauer, B. Sellner, F. Plasser, J. J. Szymczak, R. F. Spada and A. Das, COLUMBUS, an ab initio electronic structure program, release 7.0, 2017.

  76. H. Lischka, T. Muller, P. G. Szalay, I. Shavitt, R. M. Pitzer and R. Shepard, Columbus—a program system for advanced multireference theory calculations, WIREs Comput. Mol. Sci., 2011, 1, 191–199.

    Article  CAS  Google Scholar 

  77. G. F. Trezzini and J.-P. Zryd, Characterization of some natural and semi-synthetic betaxanthins, Phytochemistry, 1991, 30, 1901–1903.

    Article  CAS  Google Scholar 

  78. H. Lischka, M. Barbatti, F. Siddique, A. Das and A. J. A. Aquino, The effect of hydrogen bonding on the nonadiabatic dynamics of a thymine-water cluster, Chem. Phys., 2018, 515, 472–479.

    Article  CAS  Google Scholar 

  79. L. Stojanovi, S. Bai, J. Nagesh, A. F. Izmaylov, R. Crespo-Otero, H. Lischka and M. Barbatti, New Insights into the State Trapping of UV-Excited Thymine, Molecules, 2016, 21, 1603.

    Article  CAS  Google Scholar 

  80. M. R. Silva-Junior, M. Schreiber, S. P. A. Sauer and W. Thiel, Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction, J. Chem. Phys., 2008, 129, 104103.

    Article  PubMed  CAS  Google Scholar 

  81. G. Fogarasi, X. Zhou, P. W. Taylor and P. Pulay, The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces, J. Am. Chem. Soc., 1992, 114, 8191–8201.

    Article  CAS  Google Scholar 

  82. M. Wendel, D. Szot, K. Starzak, D. Tuwalska, D. Prukala, T. Pedzinski, M. Sikorski, S. Wybraniec and G. Burdzinski, Photophysical properties of indicaxanthin in aqueous and alcoholic solutions, Dyes Pigm., 2015, 113, 634–639.

    Article  CAS  Google Scholar 

  83. M. Wendel, S. Nizinski, D. Tuwalska, K. Starzak, D. Szot, D. Prukala, M. Sikorski, S. Wybraniec and G. Burdzinski, Time-resolved spectroscopy of the singlet excited state of betanin in aqueous and alcoholic solutions, Phys. Chem. Chem. Phys., 2015, 17, 18152–18158.

    Article  CAS  PubMed  Google Scholar 

  84. A. C. B. Rodrigues, Doctoral thesis, Institute of Chemistry, University of São Paulo, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Lischka.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00131j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Siddique, F., Lischka, H. et al. Conical intersections and the weak fluorescence of betalains. Photochem Photobiol Sci 18, 1972–1981 (2019). https://doi.org/10.1039/c9pp00131j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00131j

Navigation