Skip to main content
Log in

Optimized synthesis of luminescent silica nanoparticles by a direct micelle-assisted method

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Silica nanoparticles (NPs) are versatile nanomaterials, which are safe with respect to biomedical applications, and therefore are highly investigated. The advantages of NPs include their ease of preparation, inexpensive starting materials and the possibility of functionalization or loading with various doping agents. However, the solubility of the doping agent(s) imposes constraints on the choice of the reaction system and hence limits the range of molecules that can be included in the interior of NPs. To overcome this problem, herein, we improved the current state of the art synthetic strategy based on Pluronic F127 by enabling the synthesis in the presence of large amounts of organic solvents. The new method enables the preparation of nanoparticles doped with large amounts of water-insoluble doping agents. To illustrate the applicability of the technology, we successfully incorporated a range of phosphorescent metalloporphyrins into the interior of NPs. The resulting phosphorescent nanoparticles may exhibit potential for biological oxygen sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. M. Montalti, L. Prodi, E. Rampazzo and N. Zaccheroni, Chem. Soc. Rev., 2014, 43, 4243–4268.

    Article  CAS  Google Scholar 

  2. B. Yang, L. Leclercq, J.-M. Clacens and V. Nardello-Rataj, Green Chem., 2017, 19, 4552–4562.

    Article  CAS  Google Scholar 

  3. A. Kausar and T. Iqbal, Polym.-Plast. Technol. Eng., 2016, 55, 826–861.

    Article  Google Scholar 

  4. C. Caltagirone, A. Bettoschi, A. Garau and R. Montis, Chem. Soc. Rev., 2015, 44, 4645–4671.

    Article  CAS  Google Scholar 

  5. R. Enrico, G. Damiano, P. Francesco, P. Luca and Z. Nelsi, Methods Appl. Fluoresc., 2018, 6 ,022002.

    Article  Google Scholar 

  6. J. Wen, K. Yang, F. Liu, H. Li, Y. Xu and S. Sun, Chem. Soc. Rev., 2017, 46, 6024–6045.

    Article  CAS  Google Scholar 

  7. E. Aznar, M. Oroval, L. Pascual, J. R. Murguía, R. Martínez-Máñez and F. Sancenón, Chem. Rev., 2016, 116, 561–718.

    Article  CAS  Google Scholar 

  8. S. Bonacchi, D. Genovese, R. Juris, M. Montalti, L. Prodi, E. Rampazzo, M. Sgarzi and N. Zaccheroni, Top. Curr. Chem., 2011, 300, 93–138.

    Article  CAS  Google Scholar 

  9. K. Li, J. Wei, H. Yu, P. Xu, J. Wang, H. Yin, M. A. Cohen Stuart and S. Zhou, Angew. Chem., Int. Ed., 2018, 57, 16458–16463.

    Article  CAS  Google Scholar 

  10. J. Bourquin, A. Milosevic, D. Hauser, R. Lehner, F. Blank, A. Petri-Fink and B. Rothen-Rutishauser, Adv. Mater., 2018, 30, e1704307.

  11. J. G. Croissant, Y. Fatieiev and N. M. Khashab, Adv. Mater., 2017, 29, 1604634.

    Article  Google Scholar 

  12. J. G. Croissant, Y. Fatieiev, A. Almalik and N. M. Khashab, Adv. Healthcare Mater., 2018, 7, 1700831.

    Article  Google Scholar 

  13. L. Maggini, L. Travaglini, I. Cabrera, P. Castro-Hartmann and L. De Cola, Chemistry, 2016, 22, 3697–3703.

    Article  CAS  Google Scholar 

  14. L. Maggini, I. Cabrera, A. Ruiz-Carretero, E. A. Prasetyanto, E. Robinet and L. De Cola, Nanoscale, 2016, 8, 7240–7247.

    Article  CAS  Google Scholar 

  15. W. Stöber, A. Fink and E. Bohn, J. Colloid Interface Sci., 1968, 26, 62–69.

    Article  Google Scholar 

  16. M. Nakamura and K. Ishimura, Langmuir, 2008, 24, 5099–5108.

    Article  CAS  Google Scholar 

  17. M. S. Bradbury, E. Phillips, P. H. Montero, S. M. Cheal, H. Stambuk, J. C. Durack, C. T. Sofocleous, R. J. C. Meester, U. Wiesner and S. Patel, Integr. Biol., 2013, 5, 74–86.

    Article  CAS  Google Scholar 

  18. R. P. Bagwe, L. R. Hilliard and W. Tan, Langmuir, 2006, 22, 4357–4362.

    Article  CAS  Google Scholar 

  19. R. P. Bagwe, C. Yang, L. R. Hilliard and W. Tan, Langmuir, 2004, 20, 8336–8342.

    Article  CAS  Google Scholar 

  20. L. Cai, Z.-Z. Chen, M.-Y. Chen, H.-W. Tang and D.-W. Pang, Biomaterials, 2013, 34, 371–381.

    Article  CAS  Google Scholar 

  21. R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad and P. N. Prasad, ACS Nano, 2010, 4, 699–708.

  22. R. Kumar, I. Roy, T. Y. Ohulchanskyy, L. N. Goswami, A. C. Bonoiu, E. J. Bergey, K. M. Tramposch, A. Maitra and P. N. Prasad, ACS Nano, 2008, 2, 449–456.

    Article  CAS  Google Scholar 

  23. I. R. Diksha, Methods Mol. Biol., 2012, 906, 365–379.

    CAS  PubMed  Google Scholar 

  24. E. Rampazzo, S. Bonacchi, M. Montalti, L. Prodi and N. Zaccheroni, J. Am. Chem. Soc., 2007, 129, 14251–14256.

    Article  CAS  Google Scholar 

  25. D. Genovese, S. Bonacchi, R. Juris, M. Montalti, L. Prodi, E. Rampazzo and N. Zaccheroni, Angew. Chem., Int. Ed., 2013, 52, 5965–5968.

    Article  CAS  Google Scholar 

  26. E. Rampazzo, S. Bonacchi, D. Genovese, R. Juris, M. Montalti, V. Paterlini, N. Zaccheroni, C. Dumas-Verdes, G. Clavier, R. Méallet-Renault and L. Prodi, J. Phys. Chem. C, 2014, 118, 9261–9267.

    Article  CAS  Google Scholar 

  27. E. Rampazzo, R. Voltan, L. Petrizza, N. Zaccheroni, L. Prodi, F. Casciano, G. Zauli and P. Secchiero, Nanoscale, 2013, 5, 7897–7905.

    Article  CAS  Google Scholar 

  28. E. Rampazzo, F. Boschi, S. Bonacchi, R. Juris, M. Montalti, N. Zaccheroni, L. Prodi, L. Calderan, B. Rossi, S. Becchi and A. Sbarbati, Nanoscale, 2012, 4, 824–830.

    Article  CAS  Google Scholar 

  29. M. Helle, E. Rampazzo, M. Monchanin, F. Marchal, F. Guillemin, S. Bonacchi, F. Salis, L. Prodi and L. Bezdetnaya, ACS Nano, 2013, 7, 8645–8657.

    Article  CAS  Google Scholar 

  30. S. Biffi, L. Petrizza, C. Garrovo, E. Rampazzo, L. Andolfi, P. Giustetto, I. Nikolov, G. Kurdi, M. B. Danailov, G. Zauli, P. Secchiero and L. Prodi, Int. J. Nanomed., 2016, 11, 4865–4874.

    Article  CAS  Google Scholar 

  31. E. Rampazzo, S. Bonacchi, R. Juris, D. Genovese, L. Prodi, N. Zaccheroni and M. Montalti, Chem. – Eur. J., 2018, 24, 16743–16746.

    Article  CAS  Google Scholar 

  32. G. Valenti, E. Rampazzo, S. Bonacchi, L. Petrizza, M. Marcaccio, M. Montalti, L. Prodi and F. Paolucci, J. Am. Chem. Soc., 2016, 138, 15935–15942.

    Article  CAS  Google Scholar 

  33. J. M. Vanderkooi, G. Maniara, T. J. Green and D. F. Wilson, J. Biol. Chem., 1987, 262, 5476–5482.

    Article  CAS  Google Scholar 

  34. W. L. Rumsey, J. M. Vanderkooi and D. F. Wilson, Science, 1988, 241, 1649–1651.

    Article  CAS  Google Scholar 

  35. A. Y. Lebedev, A. V. Cheprakov, S. Sakadžić, D. A. Boas, D. F. Wilson and S. A. Vinogradov, ACS Appl. Mater. Interfaces, 2009, 1, 1292–1304.

    Article  CAS  Google Scholar 

  36. T. V. Esipova, A. Karagodov, J. Miller, D. F. Wilson, T. M. Busch and S. A. Vinogradov, Anal. Chem., 2011, 83, 8756–8765.

    Article  CAS  Google Scholar 

  37. S. A. Vinogradov and D. F. Wilson, in Designing Dendrimers, ed. S. Campagna and P. Ceroni, Wiley, New York, 2012.

    Google Scholar 

  38. T. V. Esipova, M. J. P. Barrett, E. Erlebach, A. E. Masunov, B. Weber and S. A. Vinogradov, Cell Metab., 2019, 29, 736–744.

    Article  CAS  Google Scholar 

  39. M. Quaranta, S. M. Borisov and I. Klimant, Bioanal. Rev., 2012, 4, 115–157.

    Article  Google Scholar 

  40. D. B. Papkovsky and A. V. Zhdanov, Free Radicals Biol. Med., 2016, 101, 202–210.

    Article  CAS  Google Scholar 

  41. E. Rampazzo, S. Bonacchi, R. Juris, M. Montalti, D. Genovese, N. Zaccheroni, L. Prodi, D. C. Rambaldi, A. Zattoni and P. Reschiglian, J. Phys. Chem. B, 2010, 114, 14605–14613.

    Article  CAS  Google Scholar 

  42. Photochemistry of polypyridine and porphyrin complexes, ed. K. Kalyanasundaram, Academic Press, London, 1992.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei A. Vinogradov.

Additional information

Electronic supplementary information (ESI) available: Details of experimental procedures, Dynamic Light Scattering of micelle and nanoparticles suspension, TEM images and photophysical characterization. See DOI: 10.1039/c9pp00047j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DelSecco, B., Ravotto, L., Esipova, T.V. et al. Optimized synthesis of luminescent silica nanoparticles by a direct micelle-assisted method. Photochem Photobiol Sci 18, 2142–2149 (2019). https://doi.org/10.1039/c9pp00047j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00047j

Navigation