Skip to main content
Log in

2-Azo-, 2-diazocine-thiazols and 2-azo-imidazoles as photoswitchable kinase inhibitors: limitations and pitfalls of the photoswitchable inhibitor approach

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In photopharmacology, photoswitchable compounds including azobenzene or other diarylazo moieties exhibit bioactivity against a target protein typically in the slender E-configuration, whereas the rather bulky Z-configuration usually is pharmacologically less potent. Herein we report the design, synthesis and photochemical/inhibitory characterization of new photoswitchable kinase inhibitors targeting p38a MAPK and CK15. A well characterized inhibitor scaffold was used to attach arylazo- and diazocine moieties. When the isolated isomers, or the photostationary state (PSS) of isomers, were tested in commonly used in vitro kinase assays, however, only small differences in activity were observed. X-ray analyses of ligand-bound p38α MAPK and CK15 complexes revealed dynamic conformational adaptations of the protein with respect to both isomers. More importantly, irreversible reduction of the azo group to the corresponding hydrazine was observed. Independent experiments revealed that reducing agents such as DTT (dithiothreitol) and GSH (glutathione) that are typically used for protein stabilization in biological assays were responsible. Two further sources of error are the concentration dependence of the E-Z-switching efficiency and artefacts due to incomplete exclusion of light during testing. Our findings may also apply to a number of previously investigated azobenzene-based photoswitchable inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Balzani, A. Credi, F. M. Raymo and J. F. Stoddart, Angew. Chem., Int. Ed., 2000, 39, 3348–3391.

    Article  CAS  Google Scholar 

  2. W. Browne and B. L. Feringa, Nat. Nanotechnol., 2006, 1, 25–35.

    Article  CAS  PubMed  Google Scholar 

  3. S. Kassem, T. van Leeuwen, A. S. Lubbe, M. R. Wilson, B. L. Feringa and D. A. Leigh, Chem. Soc. Rev., 2017, 46, 2592–2621.

    Article  CAS  PubMed  Google Scholar 

  4. K. Matsuda and M. Irie, J. Photochem. Photobiol., C, 2004, 5, 169–182.

    Article  CAS  Google Scholar 

  5. T.-T.-T. Nguyen, D. Türp, M. Wagner and K. Müllen, Angew. Chem., Int. Ed., 2013, 52, 669–673.

    Article  CAS  Google Scholar 

  6. G. Mayer and A. Heckel, Angew. Chem., Int. Ed., 2006, 45, 4900–4921.

    Article  CAS  Google Scholar 

  7. A. A. Beharry and G. A. Woolley, Chem. Soc. Rev., 2011, 40, 4422–4437.

    Article  CAS  PubMed  Google Scholar 

  8. M. M. Lerch, M. J. Hansen, G. M. van Dam, W. Szymanski and B. L. Feringa, Angew. Chem., Int. Ed., 2016, 55, 10978.

    Article  CAS  Google Scholar 

  9. K. Hüll, J. Morstein and D. Trauner, Chem. Rev., 2018, 118, 10710–10747.

    Article  PubMed  CAS  Google Scholar 

  10. W. Szymanski, M. E. Ourailidou, W. A. Velema, F. J. Dekker and B. L. Feringa, Chem. - Eur.J., 2015, 21, 16517–16524.

    Article  CAS  PubMed  Google Scholar 

  11. D. Vomasta, C. Högner, N. R. Branda and B. König, Angew. Chem., Int. Ed., 2008, 47, 7644–7647.

    Article  CAS  Google Scholar 

  12. R. Ferreira, J. R. Nilsson, C. Solano, J. Andrésson and M. Grotli, Sci. Rep., 2015, 5, 1–8.

    Article  CAS  Google Scholar 

  13. J. Kuil, L. T. M. van Wandelen, N. J. de Mol and R. M. J. Liskamp, Bioorg. Med. Chem., 2008, 16, 1393–1399.

    Article  CAS  PubMed  Google Scholar 

  14. A. D. Abell, M. A. Jones, A. T. Neffe, S. G. Aitken, T. P. Cain, R. J. Payne, S. B. McNabb, J. M. Coxon, B. G. Stuart, D. Pearson, H. Y.-Y. Lee and J. D. Morton, J. Med. Chem., 2007, 50, 2916–2920.

    Article  CAS  PubMed  Google Scholar 

  15. C. Falencyk, M. Schiedel, B. Karaman, T. Rumpf, N. Kuzmanovic, M. Grotli, W. Sippl, M. Jung and B. König, Chem. Sci., 2014, 5, 4794.

    Article  CAS  Google Scholar 

  16. M. J. Hansen, W. A. Velema, G. de Bruin, H. S. Overkleeft, W. Szymanski and B. L. Feringa, ChemBioChem, 2014, 15, 2053–2057.

    Article  CAS  PubMed  Google Scholar 

  17. C. E. Weston, A. Krämer, F. Colin, Ö. Yildiz, M. G. J. Baud, F. -J. Meyer-Almes and M. J. Fuchter, ACS Infect. Dis., 2017, 3, 152–161.

    Article  CAS  PubMed  Google Scholar 

  18. D. Wutz, D. Gluhacevic, A. Chakrabarti, K. Schmidtkunz, D. Robaa, F. Erdmann, C. Romier, W. Sippl, M. Jung and B. König, Org. Biomol. Chem., 2017, 15, 4882–4896.

    Article  CAS  PubMed  Google Scholar 

  19. N. A. Smith, L.-M. Altmann, N. Wössner, E. Bauer, M. Jung and B. König, J. Org. Chem., 2018, 83, 7919–7927.

    Article  CAS  Google Scholar 

  20. D. Wilson, J. Li and N. Branda, ChemMedChem, 2017, 12, 284–287.

    Article  CAS  PubMed  Google Scholar 

  21. C. Schwab, A. J. DeMaggio, N. Ghoshal, L. I. Binder, J. Kuret and P. L. McGeer, Neurobiol. Aging, 2000, 21, 503–510.

    Article  CAS  PubMed  Google Scholar 

  22. G. Manning, D. B. Whyte, R. Martinez, T. Hunter and S. Sudarsanam, Science, 2002, 298, 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  23. J. Zhang, P. L. Yang and N. S. Gray, Nature, 2009, 9, 28–39.

    Google Scholar 

  24. A. C. Dar and K. M. Shokat, Annu. Rev. Biochem., 2011, 80, 769–795.

    Article  CAS  PubMed  Google Scholar 

  25. S. Gross, R. Rahal, N. Stransky, C. Lengauer and K. P. Hoeflich, J. Clin. Invest., 2015, 125, 1780–1789.

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. Huang, A. Shen, J. Ding and M. Geng, Trends Pharmacol. Sci., 2014, 35, 41–50.

    Article  PubMed  CAS  Google Scholar 

  27. C. Sun and R. Bernards, Trends Biochem. Sci., 2014, 39, 465–474.

    Article  CAS  PubMed  Google Scholar 

  28. S. Klaeger, S. Heinzlmeir, M. Willhelm, {etet al.}, Science, 2017, 358, 1–16.

    Article  CAS  Google Scholar 

  29. J. Halekotte, L. Witt, C. Ianes, M. Krüger, M. Bührmann, D. Rauh, C. Pichlo, E. Brunstein, A. Luxenburger, U. Baumann, U. Knippschild, J. Bischof and C. Peifer, molecules, 2017, 22, 522.

    Article  PubMed Central  CAS  Google Scholar 

  30. C. E. Weston, R. D. Richardson, P. R. Haycock, A. J. P. White and M. J. Fuchter, J. Am. Chem. Soc., 2014, 136, 11878–11881.

    Article  CAS  PubMed  Google Scholar 

  31. J. Otsuki, K. Suwa, K. K. Sarker and J. Sinha, J. Phys. Chem. A, 2007, 111, 1403–1409.

    Article  CAS  Google Scholar 

  32. R. Siewertsen, H. Neumann, B. Buchheim-Stehn, R. Herges, C. Näther, F. Renth and F. Temps, J. Am. Chem. Soc., 2009, 131, 15594–15595.

    Article  CAS  PubMed  Google Scholar 

  33. S. Laufer and P. Koch, Org. Biomol. Chem., 2008, 6, 437–439.

    Article  CAS  PubMed  Google Scholar 

  34. S. Laufer and A. J. Liedtke, Tetrahedron Lett., 2006, 47, 7199–7203.

    Article  CAS  Google Scholar 

  35. H. Beyer and G. Henseke, Chem. Ber., 1950, 88, 1233–1236.

    Article  Google Scholar 

  36. B. Sahlmann, PhD Thesis, Christian-Albrechts-University Kiel, 2013.

    Google Scholar 

  37. M. Dommaschk, M. Peters, F. Gutzeit, C. Schütt, C. Näther, F. D. Sönnichsen, S. Tiwari, C. Riedel, S. Boretius and R. Herges, J. Am. Chem. Soc., 2015, 137, 7552–7555.

    Article  CAS  PubMed  Google Scholar 

  38. M. J. Hansen, M. M. Lerch, W. Szymanski and B. L. Feringa, Angew. Chem., Int. Ed., 2016, 55, 13514–13518.

    Article  CAS  Google Scholar 

  39. T. Wendler, C. Schütt, C. Näther and R. Herges, J. Org. Chem., 2012, 77, 3284–3287.

    Article  CAS  PubMed  Google Scholar 

  40. J. Roger and H. Doucet, Tetrahedron, 2009, 65, 9772–9781.

    Article  CAS  Google Scholar 

  41. M. Hammerich, C. Schütt, C. Stähler, P. Lentes, F. Röhricht, R. Höppner and R. Herges, J. Am. Chem. Soc., 2016, 138, 13111–13114.

    Article  CAS  PubMed  Google Scholar 

  42. H. Kim, I. Yang, R. S. Patil, S. Kang, J. Lee, H. Choi, M.-S. Kim, S.-J. Nam and H. Kang, J. Nat. Prod., 2014, 77, 2716–2719.

    Article  PubMed  CAS  Google Scholar 

  43. D. K. Joshi, M. J. Mitchell, D. Bruce, A. J. Lough and H. Yan, Tetrahedron, 2012, 68, 8670–8676.

    Article  CAS  Google Scholar 

  44. J. Calbo, C. E. Weston, A. J. P. White, H. S. Rzepa, J. Contreras-García and M. J. Fuchter, J. Am. Chem. Soc., 2017, 139, 1261–1274.

    Article  CAS  PubMed  Google Scholar 

  45. S. Devi, M. Saraswat, S. Grewal and S. Venkataramani, J. Org. Chem., 2018, 83, 4307–4322.

    Article  CAS  PubMed  Google Scholar 

  46. W. G. Levine, Drug Metab. Rev., 1991, 23, 253–309.

    Article  CAS  PubMed  Google Scholar 

  47. A. A. Beharry, L. Wong, V. Tropepe and G. A. Woolley, Angew. Chem., Int. Ed., 2011, 50, 1325–1327.

    Article  CAS  Google Scholar 

  48. L. Stricker, M. Böckmann, T. M. Kirse, N. L. Doltsinis and B. J. Ravoo, Chem. - Eur.J., 2018, 24, 8639.

    Article  CAS  PubMed  Google Scholar 

  49. C. Renner and L. Moroder, ChemBioChem, 2006, 7, 868–878.

    Article  CAS  PubMed  Google Scholar 

  50. S. Zbaida, Drug Metab. Rev., 1995, 27, 497–516.

    Article  CAS  PubMed  Google Scholar 

  51. C. Boulègue, M. Löweneck, C. Renner and L. Moroder, ChemBioChem, 2007, 8, 591–594.

    Article  PubMed  CAS  Google Scholar 

  52. W. A. Velema, W. Szymanski and B. L. Feringa, J. Am. Chem. Soc., 2014, 136, 2178–2191.

    Article  CAS  PubMed  Google Scholar 

  53. B. A. Thaher, M. Arnsmann, F. Totzke, J. E. Ehlert, M. H. G. Kubbutat, C. Schächtele, M. O. Zimmermann, P. Koch, F. M. Boeckler and S. A. Laufer, J. Med. Chem., 2012, 55, 961–965.

    Article  PubMed  CAS  Google Scholar 

  54. A. Freitag and S. A. Laufer, Nachr. Chem., 2015, 63, 420–425.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors from Kiel university acknowledge financial support by the Deutsche Forschungsgesellschaft (DFG) within the Sonderforschungsbereich 677, “Function by Switching”. Chiara Ianes is financially supported by a grant of the medical faculty of Ulm University (“Bausteinprogramm”)awarded to Joachim Bischof. Work in the lab of Uwe Knippschild was supported by the DFG (KN356/6-1, and SFB 1149, project B04). Daniel Rauh is thankful for support from the German Federal Ministry for Education and Research (NGFNPlus and e:Med) (Grant No. BMBF 01GS08104, 01ZX1303C), the Deutsche Forschungsgemeinschaft (DFG) and the German federal state North Rhine Westphalia (NRW) and the European Union (European Regional Development Fund: Investing In Your Future) (EFRE-800400). The crystallographic experiments leading to these results have received funding from the European Community'sSeventh Framework Programme (FP7/2007-2013) under grant agreement No. 283570 (BioStruct-X). CKLS crystals were growninthe Cologne Crystallization facility (http://C2f.uni-koeIn.de/). We thank the staff at the Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland for their support during data collection. We gratefully acknowledge the help of Dr Dieter Schollmeyer, University of Mainz, Institute for Organic Chemistry, Germany, for X-ray analysis of compound 13.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Peifer or Rainer Herges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schehr, M., Lanes, C., Weisner, J. et al. 2-Azo-, 2-diazocine-thiazols and 2-azo-imidazoles as photoswitchable kinase inhibitors: limitations and pitfalls of the photoswitchable inhibitor approach. Photochem Photobiol Sci 18, 1398–1407 (2019). https://doi.org/10.1039/c9pp00010k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00010k

Navigation