Skip to main content
Log in

Combination of PDT photosensitizers with NO photodononors

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Combination of photodynamic therapy (PDT) with other treatment modalities is emerging as one of the most suitable strategies to increase the effectiveness of therapeutic action on cancer and bacterial diseases and to minimize side effects. This approach aims at exploiting the additive/synergistic effects arising from multiple therapeutic species acting on different mechanistic pathways. The coupling of PDT with photocontrolled release of nitric oxide (NO) through the appropriate assembly of PDT photosensitizers (PSs) and NO photodonors (NOPDs) may open up intriguing avenues towards new and still underexplored multimodal therapies not based on “conventional” drugs but entirely controlled by light stimuli. In this contribution, we present an overview of the most recent advances in this field, illustrating several strategies to assemble PSs and NOPDs allowing them to operate independently without reciprocal interferences and describing the potential applications with particular emphasis on their impact in anticancer and antibacterial research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dougherty, J. E. Kaufman, A. Goldfarb, K. R. Weishaupt, D. Boyle and A. Mittleman, Photoradiation therapy for the treatment of malignant tumors, Cancer Res., 1978, 38, 2628–2635.

    CAS  PubMed  Google Scholar 

  2. C. A. Robertson, D. Hawkins Evans and H. Abrahamse, Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT, J. Photochem. Photobiol., B, 2009, 96, 1–8.

    Article  CAS  Google Scholar 

  3. M. R. Hamblin and T. Hasan, Photodynamic therapy: A new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. M. M. Gois, C. H. Kurachi, E. J. B. Santana, E. G. O. Mima, D. M. P. Spolidorio, J. E. P. Pelino and V. S. Bagnato, Susceptibility of Staphylococcus aureus to porphyrin-mediated photodynamic antimicrobial chemotherapy: An in vitro study, Laser Med. Sci., 2010, 25, 391–395.

    Article  Google Scholar 

  5. A. P. Castano, P. Mroz and M. R. Hamblin, Photodynamic therapy and anti-tumour immunity, Nat. Rev. Cancer, 2006, 6, 535–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: Part one-photo-sensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1, 279–293.

    Article  CAS  Google Scholar 

  7. J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue and T. Hasan, Imaging and photo-dynamic therapy: Mechanisms, monitoring, and optimiz-ation, Chem. Rev., 2010, 12, 2795–2838.

    Article  CAS  Google Scholar 

  8. P. R. Ogilby, Singlet oxygen: there is indeed something new under the sun, Chem. Soc. Rev., 2010, 39, 3181–3209.

    Article  CAS  PubMed  Google Scholar 

  9. M. Wainmwright, Photosensitizers in Biomedicine, Wiley-Blackwell, 2009.

    Book  Google Scholar 

  10. R. Pandey and G. Zheng, in The Porphyrin Handbook, ed. K. M. Smith, K. Kadish and R. Guilard, Academic Press, San Diego, 2000, vol. 6, pp. 157–230.

    CAS  Google Scholar 

  11. A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung and K. Burgess, BODIPY dyes in photodynamic therapy, Chem. Soc. Rev., 2013, 42, 77–88.

    Article  CAS  PubMed  Google Scholar 

  12. M. Firczuk, M. Winiarska, A. Szokalska, M. Jodlowska, M. Swiech, K. Bojarczuk, P. Salwa and D. Nowis, Approaches to improve photodynamic therapy of cancer, Front. Biosci., 2011, 16, 208–224.

    Article  CAS  Google Scholar 

  13. J. Xu, J. Gao and Q. Wei, Combination of photodynamic therapy with radiotherapy for cancer treatment, J. Nanomater., 2016, 8507924.

    Google Scholar 

  14. M. Korbelik and I. Cecic, Enhancement of tumour response to photodynamic therapy by adjuvant mycobacterium cell-wall treatment, J. Photochem. Photobiol., B, 1998, 44, 151–158.

    Article  CAS  Google Scholar 

  15. M.-F. Zuluaga and N. Lange, Combination of photo-dynamic therapy with anti-cancer agents, Curr. Med. Chem., 2008, 15, 1655–1673.

    Article  CAS  PubMed  Google Scholar 

  16. A. Khdair, D. Chen, Y. Patil, L. Ma, Q. P. Dou, M. P. V. Shekhar and J. Panyam, Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance, J. Controlled Release, 2010, 141, 137–144.

    Article  CAS  Google Scholar 

  17. F. Quaglia and S. Sortino, in Applied Photochemistry: When Light Meets Molecules, ed. G. Bergamini and S. Silvi, Springe International Publishing, Switzerland, 2016, pp. 397–426.

  18. B. Tian, C. Wang, S. Zhang, L. Feng and Z. Liu, Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide, ACS Nano, 2011, 5, 7000–7009.

    Article  CAS  PubMed  Google Scholar 

  19. S. Wang, A. Riedinger, H. Li, C. Fu, H. Liu, L. Li, T. Liu, L. Tan, M. J. Barthel, G. Pugliese, F. De Donato, M. Scotto D'Abbusco, X. Meng, L. Manna, H. Meng and T. Pellegrino, Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermaland Photodynamic Therapeutic Effects, ACS Nano, 2015, 9, 1788–1800.

    Article  CAS  PubMed  Google Scholar 

  20. P. Vijayaraghavan, C. H. Liu, R. Vankayala, C. S. Chiang and K. C. Hwang, Designing Multi-Branched Gold Nanoechinus for NIR Light Activated Dual Modal Photodynamic and Photothermal Therapy in the Second Biological Window, Adv. Mater., 2014, 26, 6689–6695.

    Article  CAS  PubMed  Google Scholar 

  21. Y. Yuan, J. Liu and B. Liu, Conjugated-polyelectrolyte-based polyprodrug: targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source, Angew. Chem., Int. Ed., 2014, 53, 7163–7168.

    Article  CAS  Google Scholar 

  22. J. Liu, G. Yang, W. Zhu, Z. Dong, Y. Yang, Y. Chao and Z. Liu, Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy, Biomaterials, 2017, 146, 40–48.

    Article  CAS  PubMed  Google Scholar 

  23. A. L. Tessaro, A. Fraix, M. Failla, V. Cardile, A. C. E. Graziano, B. M. Estavao, A. Rescifina and S. Sortino, Light-controlled simultaneous “on demand” release of cytotoxic combinations for bimodal killing of cancer cells, Chem. - Eur. J., 2018, 24, 7664–7670.

    Article  CAS  PubMed  Google Scholar 

  24. A. Fraix, N. Marino and S. Sortino, Phototherapeutic release of nitric oxide with engineered nanoconstructs, Top. Curr. Chem., 2016, 370, 225–257.

    Article  CAS  PubMed  Google Scholar 

  25. Nitric Oxide: Biology and Pathobiology, ed. L. J. Ignarro, Elsevier Inc., 2010.

    Google Scholar 

  26. Special Journal Issue on Nitric Oxide Chemistry and Biology, in Arch. Pharmacal Res, ed. L. J. Ignarro, 2009.

  27. D. Fukumura, S. Kashiwagi and R. K. Jain, Nat. Rev. Cancer, 2006, 6, 521–534.

    Article  CAS  PubMed  Google Scholar 

  28. F. C. Fang, Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity, J. Clin. Invest., 1997, 99, 2818–2825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Methods in Enzymology, in Nitric Oxide, Part C: Biological and Antioxidant Activities, ed. L. Packer, Academic, San Diego, 1999, vol. 301.

  30. A. W. Carpenter and M.-H. Schoenfisch, Nitric oxide release: part II. Therapeutic applications, Chem. Soc. Rev., 2012, 41, 3742–3752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Z. Huang, J. Fu and Y. Zhang, Nitric oxide donor-based cancer therapy: Advances and prospects, J. Med. Chem., 2017, 60, 7617–7635.

    Article  CAS  PubMed  Google Scholar 

  32. D. A. Wink and J. B. Mitchell, Chemical biology of nitric oxide: insights into regulatory, cytotoxic and cytoprotective mechanisms of nitric oxide, Free Radicals Biol. Med., 1998, 25, 434–456.

    Article  CAS  Google Scholar 

  33. D. Fukumura, S. Kashiwagi and R. K. Jain, The role of nitric oxide in tumor progression, Nat. Rev. Cancer, 2006, 6, 521–534.

    Article  CAS  PubMed  Google Scholar 

  34. E. Nisoli and M. O. Carruba, Nitric oxide and mitochon-drial biogenesis, J. Cell Sci., 2006, 2855–2862.

    Google Scholar 

  35. A. W. Girotti, Modulation of the anti-tumor efficacy of photodynamic therapy by nitric oxide, Cancers, 2016, 8, 96–112 and references therein.

    Article  PubMed Central  CAS  Google Scholar 

  36. D. A. Wink, Y. Vodovotz, J. Laval, F. Laval, M. W. Dewhirst and J. B. Mitchell, Carcinogenesis, 1998, 19, 711–721.

    Article  CAS  PubMed  Google Scholar 

  37. S. Moncada and J. D. Erusalimsky, Does nitric oxide modu-late mitochondrial energy generation and apoptosis?, Nat. Rev. Mol. Cell Biol., 2002, 3, 214–220.

    Article  CAS  PubMed  Google Scholar 

  38. W. A. Pryor and G. L. Squadrito, The chemistry of peroxy-nitrite: a product from the reaction of nitric oxide with superoxide, Am. J. Physiol., 1995, 268, L699–L722.

    CAS  PubMed  Google Scholar 

  39. A. A. Noronha-Dutra, M. M. Epperlein and N. Woolf, Protective effects of tetrahydrobiopterin against nitric oxide-induced endothelial cell death, FEBS Lett., 1993, 321, 59–62.

    Article  CAS  PubMed  Google Scholar 

  40. S. Sortino, Light-controlled nitric oxide delivering mole-cular assemblies, Chem. Soc. Rev., 2010, 39, 2903–2913.

    Article  CAS  PubMed  Google Scholar 

  41. P. C. Ford, Polychromophoric Metal Complexes for Generating the Bioregulatory Agent Nitric Oxide by Single-and Two-Photon Excitation, Acc. Chem. Res., 2008, 41, 190–200.

    Article  CAS  PubMed  Google Scholar 

  42. N. L. Fry and P. K. Mascharak, Photoactive ruthenium nitrosyls as NO donors: How to sensitize them toward visible light, Acc. Chem. Res., 2011, 44, 289–298.

    Article  CAS  PubMed  Google Scholar 

  43. P. C. Ford, Photochemical delivery of nitric oxide, Nitric Oxide, 2013, 34, 56–65.

    Article  CAS  PubMed  Google Scholar 

  44. P. Klan, T. Solomek, C. G. Bochet, A. Blanc, R. Given, M. Rubina, V. Popik, A. Kostikov and J. Wirz, Photoremovable protecting groups in chemistry and biology: Reaction mechanisms and efficacy, Chem. Rev., 2013, 113, 119–191.

    Article  CAS  PubMed  Google Scholar 

  45. H.-J. Xiang, M. Guo and J.-G. Liu, Transition-metal nitrosyls for photocontrolled nitric oxide delivery, Eur. J. Inorg. Chem., 2017, 1586–1595.

    Google Scholar 

  46. E. B. Caruso, S. Petralia, S. Conoci, S. Giuffrida and S. Sortino, Photodelivery of nitric oxide from water-soluble platinum nanoparticles, J. Am. Chem. Soc., 2007, 129, 480–481.

    Article  CAS  PubMed  Google Scholar 

  47. S. Conoci, S. Petralia and S. Sortino, Use of nitroaniline derivatives for the production of nitric oxide, EP 2051935A1/US20090191284, 2006.

    Google Scholar 

  48. T. Suzuki, O. Nagae, Y. Kato, H. Nakagawa, K. Fukuhara and N. Miyata, Photoinduced nitric oxide release from nitrobenzene derivatives, J. Am. Chem. Soc., 2005, 127, 11720–11726.

    Article  CAS  PubMed  Google Scholar 

  49. K. Kitamura, N. Ieda, K. Hishikawa, T. Suzuki, N. Miyata, K. Fukuhara and H. Nakagawa, Visible light-induced nitric oxide release from a novel nitrobenzene derivative cross-conjugated with a coumarin fluorophore, Bioorg. Med. Chem. Lett., 2014, 24, 5660–5662.

    Article  CAS  PubMed  Google Scholar 

  50. N. Ieda, Y. Hotta, N. Miyata, K. Kimura and H. Nakagawa, Photomanipulation of vasodilation with a blue-light-controllable nitric oxide releaser, J. Am. Chem. Soc., 2014, 136, 7085–7091.

    Article  CAS  PubMed  Google Scholar 

  51. M. Blangetti, A. Fraix, L. Lazzarato, E. Marini, B. Rolando, F. Sodano, R. Fruttero, A. Gasco and S. Sortino, A novel nonmetal-containing nitric oxide releaser activatable with single-photon green light, Chem. - Eur. J., 2017, 23, 9026–9029.

    Article  CAS  PubMed  Google Scholar 

  52. K. Kitamura, M. Kawaguchi, N. Ieda, N. Miyata and H. Nakagawa, Visible light-controlled nitric oxide release from hindered nitrobenzene derivatives for specific modu-lation of mitochondrial dynamics, ACS Chem. Biol., 2016, 11, 1271–1278.

    Article  CAS  PubMed  Google Scholar 

  53. H. He, Y. Xia, Y. Qi, H.-Y. Wang, Z. Wang, J. Bao, Z. Zhang, F.-G. Wu, H. Wang, D. Chen, D. Yang, X. Liang, J. Chen, S. Zhou, X. Liang, X. Qian and Y. Yang, A water-soluble, green-light triggered, and photo-calibrated nitric oxide donor for biological applications, Bioconjugate Chem., 2018, 29, 1194–1198.

    Article  CAS  Google Scholar 

  54. A. Fraix and S. Sortino, Photoactivable platforms for nitric oxide delivery with fluorescence imaging, Chem. - Asian J., 2015, 10, 1116–1125.

    Article  CAS  PubMed  Google Scholar 

  55. R. S. da Silva, M. S. P. Marchesi, A. C. Tedesco, A. Mikhailovsky and P. C. Ford, Generation of reactive oxygen species by photolysis of the ruthenium(II) complex Ru(NH3)5(pyrazine)2+ in oxygenated solution, Photochem. Photobiol. Sci., 2007, 6, 515–518.

    Article  PubMed  CAS  Google Scholar 

  56. R. S. da Silva, M. S. P. Marchesi, C. Khin, C. N. Lunardi, L. M. Bendhack and P. C. Ford, Photoinduced electron transfer between the cationic complexes Ru(NH3)5pz2+ and trans-RuCl([15]aneN4)NO2+ mediated by phosphate ion: visible light generation of nitric oxide for biological targets, J. Phys. Chem. B, 2007, 111, 6962–6968.

    Article  PubMed  CAS  Google Scholar 

  57. L. C. B. Ramos, M. S. P. Marchesi, D. Callejon, M. D. Baruffi, C. N. Lunardi, L. D. Slep, L. M. Bendhack and R. S. da Silva, Enhanced antitumor activity against melanoma cancer cells by nitric oxide release and photosensitized generation of singlet oxygen from ruthenium complexes, Eur. J. Inorg. Chem., 2016, 3592–3597.

    Google Scholar 

  58. S. A. Cicillini, A. C. L. Prazias, A. C. Tedesco, O. A. Serra and R. S. da Silva, Nitric oxide and singlet oxygen photo-generation by light irradiation in the phototherapeutic window of a nitrosyl ruthenium conjugated with a phthalo-cyanine rare earth complex, Polyhedron, 2009, 28, 2766–2770.

    Article  CAS  Google Scholar 

  59. Z. A. Carneiro, J. C. B. de Moraes, F. P. Rodrigues, R. G. de Lima, C. Curti, Z. N. da Rocha, M. Paulo, L. M. Bendhack, A. C. Tedesco, A. L. B. Formiga and R. S. da Silva, Photocytotoxic activity of a nitrosyl phthalocyanine ruthe-nium complex—A system capable of producing nitric oxide and singlet oxygen, J. Inorg. Biochem., 2011, 105, 1035–1043.

    Article  CAS  PubMed  Google Scholar 

  60. T. A. Heinrich, A. C. Tedesco, J. M. Fukuto and R. S. da Silva, Production of reactive oxygen and nitrogen species by light irradiation of a nitrosyl phthalocyanine ruthenium complex as a strategy for cancer treatment, Dalton Trans., 2014, 43, 4021–4025.

    Article  CAS  PubMed  Google Scholar 

  61. A. Fraix, S. Guglielmo, V. Cardile, A. C. E. Graziano, R. Gref, B. Rolando, R. Fruttero, A. Gasco and S. Sortino, A multi-photoresponsive molecular-hybrid for dual-modal photoinactivation of cancer cells, RSC Adv., 2014, 4, 44827–44836.

    Article  CAS  Google Scholar 

  62. A. Fraix, M. Blangetti, S. Guglielmo, L. Lazzarato, N. Marino, V. Cardile, A. C. E. Graziano, I. Manet, R. Fruttero, A. Gasco and S. Sortino, Light-tunable generation of singlet oxygen and nitric oxide with a bichromophoric molecular hybrid: A bimodal approach to killing cancer cells, ChemMedChem, 2016, 11, 1371–1379.

    Article  CAS  PubMed  Google Scholar 

  63. V. Rapozzi, D. Ragno, A. Guerrini, C. Ferroni, E. della Pietra, D. Cesselli, G. Castoria, M. Di Donato, E. Saracino, V. Benfenati and G. Varchi, Androgen receptor targeted conjugate for bimodal photodynamic therapy of prostate cancer in vitro, Bioconjugate Chem., 2015, 26, 1662–1671.

    Article  CAS  Google Scholar 

  64. V. Rapozzi, G. Varchi, E. Della Pietra, C. Ferroni and L. E. Xodo, A photodynamic bifunctional conjugate for prostate cancer: An in vitro mechanistic study, Invest. New Drugs, 2017, 35, 115–123.

    Article  CAS  PubMed  Google Scholar 

  65. J.-P. Pellois, M. E. Hahn and T. W. Muir, Simultaneous trig-gering of protein activity and fluorescence, J. Am. Chem. Soc., 2004, 126, 7170–7171.

    Article  CAS  PubMed  Google Scholar 

  66. G. Benkovics, M. Perez-Lloret, D. Afonso, A. Darcsi, S. Béni, É. Fenyvesi, M. Malanga and S. Sortino, A multifunctional p-cyclodextrin-conjugate photodelivering nitric oxide with fluorescence reporting, Int. J. Pharm., 2017, 531, 614–620.

    Article  CAS  PubMed  Google Scholar 

  67. S. Swaminathan, J. Garcia-Amoros, A. Fraix, N. Kandoth, S. Sortino and F. M. Raymo, Photoresponsive polymer nanocarriers with a multifunctional cargo, Chem. Soc. Rev., 2014, 43, 4167–4178.

    Article  CAS  PubMed  Google Scholar 

  68. D. S. Maranho, R. G. de Lima, F. L. Primo, R. S. da Silva and A. C. Tedesco, Photoinduced nitric oxide and singlet oxygen release from ZnPC liposome vehicle associated with the nitrosyl ruthenium complex: Synergistic effects in photodynamic therapy application, Photochem. Photobiol., 2009, 85, 705–713.

    Article  CAS  PubMed  Google Scholar 

  69. A. Fraix, I. Manet, M. Ballestri, A. Guerrini, P. Dambruoso, G. Sotgiu, G. Varchi, M. Camerin, O. Coppellotti and S. Sortino, Polymer nanoparticles with electrostatically loaded multicargo for combined cancer phototherapy, J. Mater. Chem. B, 2015, 3, 3001–3010.

    Article  CAS  PubMed  Google Scholar 

  70. J. Dolansky, P. Henke, Z. Mala, L. Zarska, P. Kubat and J. Mosinger, Antibacterial nitric oxide-and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers, Nanoscale, 2018, 10, 2639–2648.

    Article  CAS  PubMed  Google Scholar 

  71. S. Daoud-Mahammed, C. Ringard-Lefebvre, N. Razzouq, V. Rosilio, B. Gillet, P. Couvreur, C. Amiel and R. Gref, Spontaneous association of hydrophobized dextran and poly-beta-cyclodextrin into nanoassemblies. Formation and interaction with a hydrophobic drug, J. Colloid Interface Sci., 2006, 307, 83–93.

    Article  PubMed  CAS  Google Scholar 

  72. N. Kandoth, V. Kirejev, S. Monti, R. Gref, M. B. Ericson and S. Sortino, Two-photon fluorescence imaging and bimodal phototherapy of epidermal cancer cells with biocompatible self-assembled polymer nanoparticles, Biomacromolecules, 2014, 15, 1768–1776.

    Article  CAS  PubMed  Google Scholar 

  73. A. Fraix, N. Kandoth, I. Manet, V. Cardile, A. C. E. Graziano, R. Gref and S. Sortino, An engineered nanoplatform for bimodal anticancer phototherapy with dual-color fluorescence detection of sensitizers, Chem. Commun., 2013, 49, 4459–4461.

    Article  CAS  Google Scholar 

  74. N. Kandoth, E. Vittorino, M. T. Sciortino, T. Parisi, I. Colao, A. Mazzaglia and S. Sortino, A cyclodextrin-based nano-assembly with bimodal photodynamic action, Chem. - Eur. J., 2012, 18, 1684–1690.

    Article  CAS  PubMed  Google Scholar 

  75. E. B. Caruso, E. Cicciarella and S. Sortino, A multifunc-tional nanoassembly of mesogen-bearing amphiphiles and porphyrins for the simultaneous photodelivery of nitric oxide and singlet oxygen, Chem. Commun., 2007, 5028–5030.

    Google Scholar 

  76. A. Fraix, N. Kandoth, I. Manet, V. Cardile, A. C. E. Graziano, R. Gref and S. Sortino, A multifunctional bichromophoric nanoaggregate for fluorescence imaging and simultaneous photogeneration of RNOS and ROS, Chem. - Asian J., 2013, 8, 2634–2641.

    Article  CAS  PubMed  Google Scholar 

  77. H.-J. Xiang, L. An, W.-W. Tang, S.-P. Yang and J.-G. Liu, Photo-controlled targeted intracellular delivery of both nitric oxide and singlet oxygen using a fluorescence-track-able ruthenium nitrosyl functional nanoplatform, Chem. Commun., 2015, 51, 2555–2558.

    Article  CAS  Google Scholar 

  78. H. Xiang, Q. Deng, L. An, M. Guo, S. Yang and J. Liu, Tumor cell specific and lysosome-targeted delivery of nitric oxide for enhanced photodynamic therapy triggered by 808 nm near-infrared light, Chem. Commun., 2016, 52, 148–151.

    Article  CAS  Google Scholar 

  79. D. Afonso, S. Valetti, A. Fraix, C. Bascetta, S. Petralia, S. Conoci, A. Feiler and S. Sortino, Multivalent mesoporous silica nanoparticles photo-delivering nitric oxide with carbon dots as fluorescence reporters, Nanoscale, 2017, 9, 13404–13408.

    Article  CAS  PubMed  Google Scholar 

  80. A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly, Academic Press, New York, 1991.

    Google Scholar 

  81. G. Giancane, L. Valli and S. Sortino, Dual-function multi-layers for the photodelivery of nitric oxide and singlet oxygen, ChemPhysChem, 2009, 10, 3077–3082.

    Article  CAS  PubMed  Google Scholar 

  82. E. Vittorino, G. Giancane, S. Bettini, L. Valli and S. Sortino, Bichromophoric multilayer films for the light-controlled generation of nitric oxide and singlet oxygen, J. Mater. Chem., 2009, 19, 8253–8258.

    Article  CAS  Google Scholar 

  83. J. Gehring, B. Trepka, N. Klinkenberg, H. Bronner, D. Schleheck and S. Polarz, Sunlight-triggered nanoparticle synergy: Teamwork of reactive oxygen species and nitric oxide released from mesoporous organosilica with advanced antibacterial activity, J. Am. Chem. Soc., 2016, 138, 3076–3084.

    Article  CAS  PubMed  Google Scholar 

  84. J. Dolansky, P. Henke, P. Kubat, A. Fraix, S. Sortino and J. Mosinger, Polystyrene nanofiber materials for visible-light-driven dual antibacterial action via simultaneous photogeneration of NO and O2(1Ag), ACS Appl. Mater. Interfaces, 2015, 7, 22980–22989.

    Article  CAS  PubMed  Google Scholar 

  85. A. Fraix, R. Gref and S. Sortino, A multi-photoresponsive supramolecular hydrogel with dual-color fluorescence and dual-modal photodynamic action, J. Mater. Chem. B, 2014, 2, 3443–3449.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all those researchers who have been contributing to this exciting subject and whose names are listed in the reference list. We also thank the referees for their constructive comments that helped improve the quality of the manuscript. Part of the research described in this paper has been supported by the AIRC (Project IG-12834 and Project IG-19859) and the Marie Curie Program #608407 CYCLON HIT (FP7-PEOPLE-ITN-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Sortino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraix, A., Sortino, S. Combination of PDT photosensitizers with NO photodononors. Photochem Photobiol Sci 17, 1709–1727 (2018). https://doi.org/10.1039/c8pp00272j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00272j

Navigation