Skip to main content

Advertisement

Log in

Photobiomodulation: lasers vs. light emitting diodes?

  • PERSPECTIVE
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

A Correction to this article was published on 01 January 2019

This article has been updated

Abstract

Photobiomodulation (PBM) is a treatment method based on research findings showing that irradiation with certain wavelengths of red or near-infrared light has been shown to produce a range of physiological effects in cells, tissues, animals and humans. Scientific research into PBM was initially started in the late 1960s by utilizing the newly invented (1960) lasers, and the therapy rapidly became known as “low-level laser therapy”. It was mainly used for wound healing and reduction of pain and inflammation. Despite other light sources being available during the first 40 years of PBM research, lasers remained by far the most commonly employed device, and in fact, some authors insisted that lasers were essential to the therapeutic benefit. Collimated, coherent, highly monochromatic beams with the possibility of high power densities were considered preferable. However in recent years, non-coherent light sources such as light-emitting diodes (LEDs) and broad-band lamps have become common. Advantages of LEDs include no laser safety considerations, ease of home use, ability to irradiate a large area of tissue at once, possibility of wearable devices, and much lower cost per mW. LED photobiomodulation is here to stay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  1. J. J. Anders, R. J. Lanzafame and P. R. Arany, Low-level light/laser therapy versus photobiomodulation therapy, Photomed. Laser Surg., 2015, 33(4), 183–184.

    Article  PubMed  PubMed Central  Google Scholar 

  2. T. Karu, Primary and secondary mechanisms of action of visible to near-IR radiation on cells, J. Photochem. Photobiol., B, 1999, 49(1), 1–17.

    Article  CAS  Google Scholar 

  3. T. I. Karu, {etet al.}, Absorption measurements of a cell mono-layer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation, J. Photochem. Photobiol., B, 2005, 81(2), 98–106.

    Article  CAS  Google Scholar 

  4. T. H. Sanderson, {etet al.}, Inhibitory modulation of cyto-chrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury, Sci. Rep., 2018, 8(1), 3481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Y. Wang, {etet al.}, Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers oper-ates via different mechanisms of action, Biochim. Biophys. Acta, 2017, 1861(2), 441–449.

    Article  CAS  Google Scholar 

  6. Y. Wang, {etet al.}, Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels, Sci. Rep., 2016, 6, 33719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L. F. de Freitas and M. R. Hamblin, Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy, IEEE J. Sel. Top. Quantum Electron., 2016, 22(3), pii: 7000417.

    Google Scholar 

  8. N. J. Prindeze, L. T. Moffatt and J. W. Shupp, Mechanisms of action for light therapy: a review of molecular inter-actions, Exp. Biol. Med., 2012, 237(11), 1241–1248.

    Article  CAS  Google Scholar 

  9. S. R. Pieczenik and J. Neustadt, Mitochondrial dysfunc-tion and molecular pathways of disease, Exp. Mol. Pathol., 2007, 83(1), 84–92.

    Article  CAS  PubMed  Google Scholar 

  10. J. Camps and A. Garcia-Heredia, Introduction: oxidation and inflammation, a molecular link between non-communicable diseases, Adv. Exp. Med. Biol., 2014, 824, 1–4.

    Article  CAS  PubMed  Google Scholar 

  11. E. Katsyuba and J. Auwerx, Modulating NAD(+) metab-olism, from bench to bedside, EMBO J., 2017, 36(18), 2670–2683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. C. Rojas and F. Gonzalez-Lima, Neurological and psychological applications of transcranial lasers and LEDs, Biochem. Pharmacol., 2013, 86(4), 447–457.

    Article  CAS  PubMed  Google Scholar 

  13. D. Tucker, Y. Lu and Q. Zhang, From Mitochondrial Function to Neuroprotection-an Emerging Role for Methylene Blue, Mol. Neurobiol., 2018, 55(6), 5137–5153.

    Article  CAS  PubMed  Google Scholar 

  14. T. H. Maiman, Stimulated optical radiation in ruby, Nature, 1960, 187, 493–494.

    Article  Google Scholar 

  15. J. Hecht, Beam: The Race to Make the Laser, Oxford University Press, Oxford, UK, 2005.

    Google Scholar 

  16. E. Mester, B. Szende and P. Gartner, The effect of laser beams on the growth of hair in mice, Radiobiol., Radiother., 1968, 9(5), 621–626.

    CAS  Google Scholar 

  17. E. Mester, A. F. Mester and A. Mester, The biomedical effects of laser application, Lasers Surg. Med., 1985, 5(1), 31–39.

    Article  CAS  PubMed  Google Scholar 

  18. N. F. Gamaleya, Laser Biomedical Research in the USSR, in Laser Applications in Medicine and Biology, ed. M. L. Wolbarsht, Springer. US, Boston, MA, 1977, vol. 3, pp. 1–173.

    Google Scholar 

  19. E. J. Cassar, G. Galletti, R. Goepel, L. S. McKibbin, R. Downie, A. R. Mester, K. C. Moore, M. Motegi, C. S. Enwemeka, Y.-C. Zhou, M.-C. Kao and L. M. Roshal, International update in LLLT, Laser Ther., 1990, 2(1), 10–13.

    Article  Google Scholar 

  20. K. F. Renk, Basics of laser physics, Springer, 2012.

    Book  Google Scholar 

  21. R. Courtland, No Nobel for the Father of the LED, IEEE Spectrum, 2014, https://spectrum.ieee.org/tech-talk/semiconductors/devices/no-nobel-for-the-father-of-the-led, accessed: 26 Apr 2018.

    Google Scholar 

  22. P. Pust, P. J. Schmidt and W. Schnick, A revolution in lighting, Nat. Mater., 2015, 14, 454.

    Article  CAS  PubMed  Google Scholar 

  23. K. D. Desmet, {etet al.}, Clinical and experimental appli-cations of NIR-LED photobiomodulation, Photomed. Laser Surg., 2006, 24(2), 121–128.

    Article  CAS  PubMed  Google Scholar 

  24. H. T. Whelan, {etet al.}, Effect of NASA light-emitting diode irradiation on wound healing, J. Clin. Laser Med. Surg., 2001, 19(6), 305–314.

    Article  CAS  PubMed  Google Scholar 

  25. W. S. Kim and R. G. Calderhead, Is light-emitting diode phototherapy (LED-LLLT) really effective?, Laser Ther., 2011, 20(3), 205–215.

    Article  PubMed  PubMed Central  Google Scholar 

  26. H. S. Antunes, {etet al.}, Cost-effectiveness of low-level laser therapy (LLLT) in head and neck cancer patients receiving concurrent chemoradiation, Oral Oncol., 2016, 52, 85–90.

    Article  PubMed  Google Scholar 

  27. M. R. Hamblin, {etet al.}, Low level laser (light) therapy and photobiomodulation: the path forward, in SPIE BiOS, SPIE, 2015.

    Google Scholar 

  28. P. Avci, {etet al.}, Low-level laser (light) therapy (LLLT) for treatment of hair loss, Lasers Surg. Med., 2014, 46(2), 144–151.

    Article  PubMed  Google Scholar 

  29. Z. Zalevsky and M. Belkin, Coherence and speckle in photomedicine and photobiology, Photomed. Laser Surg., 2011, 29(10), 655–656.

    Article  PubMed  Google Scholar 

  30. L. Hode, The importance of the coherency, Photomed. Laser Surg., 2005, 23(4), 431–434.

    Article  PubMed  Google Scholar 

  31. K. C. Smith, Laser (and LED) therapy is phototherapy, Photomed. Laser Surg., 2005, 23(1), 78–80.

    Article  PubMed  Google Scholar 

  32. J. T. Hashmi, {etet al.}, Role of low-level laser therapy in neurorehabilitation, PM R, 2010, 2 (12 Suppl 2), S292–S305.

    Article  PubMed  PubMed Central  Google Scholar 

  33. T. Karu, Photobiology of low-power laser effects, Health Phys., 1989, 56(5), 691–704.

    Article  CAS  PubMed  Google Scholar 

  34. C. S. Enwemeka, The place of coherence in light induced tissue repair and pain modulation, Photomed. Laser Surg., 2006, 24(4), 457.

    Article  PubMed  Google Scholar 

  35. L. Laakso, C. Richardson and T. Cramond, Quality of light-is laser necessary for effective photobiostimula-tion?, Aust. J. Physiother., 1993, 39(2), 87–92.

    Article  CAS  PubMed  Google Scholar 

  36. R. Lubart, {etet al.}, Light effect on fibroblast proliferaton, Laser Ther., 1993, 5(2), 55–57.

    Article  Google Scholar 

  37. R. A. Vacca, {etet al.}, Increase in cytosolic and mitochondrial protein synthesis in rat hepatocytes irradiated in vitro by He-Ne laser, J. Photochem. Photobiol., B, 1996, 34(2-3), 197–202.

    Article  CAS  Google Scholar 

  38. T. Ohshiro, New classification for single-system light treat-ment, Laser Ther., 2011, 20(1), 11–15.

    Article  PubMed  PubMed Central  Google Scholar 

  39. L. Hode and J. Tunér, Laser phototherapy-clinical practice and scientific background, Prima Books AB, Grangesberg, 2014.

    Google Scholar 

  40. S. V. Moskvin, Only lasers can be used for low level laser therapy, Biomedicine, 2017, 7(4), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. L. Hode and J. Tunér, Low-level laser therapy (LLLT) versus light-emitting diode therapy (LEDT): What is the difference?, in Laser Florence 99, SPIE, 2000.

    Google Scholar 

  42. J. S. Kana, {etet al.}, Effect of low-power density laser radi-ation on healing of open skin wounds in rats, Arch. Surg., 1981, 116(3), 293–296.

    Article  CAS  PubMed  Google Scholar 

  43. S. Young, {etet al.}, Macrophage responsiveness to light therapy, Lasers Surg. Med., 1989, 9(5), 497–505.

    Article  CAS  PubMed  Google Scholar 

  44. T. I. Karu, {etet al.}, Biological action of low-intensity visible light on HeLa cells as a function of the coherence, dose, wavelength, and irradiation regime, Sov. J. Quantum Electron., 1982, 12(9), 1134.

    Article  Google Scholar 

  45. A. L. Pinheiro, {etet al.}, Biochemical changes on the repair of surgical bone defects grafted with biphasic synthetic micro-granular HA+ beta-tricalcium phosphate induced by laser and LED phototherapies and assessed by Raman spectroscopy, Lasers Med. Sci., 2017, 32(3), 663–672.

    Article  PubMed  Google Scholar 

  46. A. L. Pinheiro, {etet al.}, Raman ratios on the repair of grafted surgical bone defects irradiated or not with laser (lambda780 nm) or LED (lambda850 nm), J. Photochem. Photobiol., B, 2014, 138, 146–154.

    Article  CAS  Google Scholar 

  47. L. G. Soares, {etet al.}, Do laser/LED phototherapies influence the outcome of the repair of surgical bone defects grafted with biphasic synthetic microgranular HA+ beta-trical-cium phosphate? A Raman spectroscopy study, Lasers Med. Sci., 2014, 29(5), 1575–1584.

    Article  PubMed  Google Scholar 

  48. M. E. de Carvalho, {etet al.}, Low intensity laser and LED therapies associated with lateral decubitus position and flexion exercises of the lower limbs in patients with lumbar disk herniation: clinical randomized trial, Lasers Med. Sci., 2016, 31(7), 1455–1463.

    Article  PubMed  Google Scholar 

  49. M. A. Cleaves, Light energy: its physics, physiological action and therapeutic applications, Rebman, 1904.

    Google Scholar 

  50. J. H. Kellogg, Light therapeutics: a practical manual of phototherapy for the student and the practitioner, Sanitarium and Hospital Equipment Company, 1910.

    Google Scholar 

  51. S. Dimitrios and L. Stasinopoulos, Treatment of Carpal Tunnel Syndrome in pregnancy with Polarized Polychromatic Non-coherent Light (Bioptron Light): A Preliminary, Prospective, Open Clinical Trial, Laser Ther., 2017, 26(4), 289–295.

    Article  PubMed  PubMed Central  Google Scholar 

  52. S. Elad, {etet al.}, A randomized controlled trial of visible-light therapy for the prevention of oral mucositis, Oral Oncol., 2011, 47(2), 125–130.

    Article  PubMed  Google Scholar 

  53. Z. Landau, {etet al.}, Visible light-induced healing of diabetic or venous foot ulcers: a placebo-controlled double-blind study, Photomed. Laser Surg., 2011, 29(6), 399–404.

    Article  PubMed  Google Scholar 

  54. G. Hoffmann, M. Hartel and J. B. Mercer, Heat for wounds-water-filtered infrared-A (wIRA) for wound healing-a review, Ger. Med. Sci., 2016, 14, Doc08.

    PubMed  PubMed Central  Google Scholar 

  55. L. Santana-Blank, {etet al.}, “Quantum Leap” in Photobiomodulation Therapy Ushers in a New Generation of Light-Based Treatments for Cancer and Other Complex Diseases: Perspective and Mini-Review, Photomed. Laser Surg., 2016, 34(3), 93–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. D. Barolet, F. Christiaens and M. R. Hamblin, Infrared and skin: Friend or foe, J. Photochem. Photobiol., B, 2016, 155, 78–85.

    Article  CAS  Google Scholar 

  57. P. G. Lindqvist, {etet al.}, Avoidance of sun exposure is a risk factor for all-cause mortality: results from the Melanoma in Southern Sweden cohort, J. Intern. Med., 2014, 276(1), 77–86.

    Article  CAS  PubMed  Google Scholar 

  58. P. G. Lindqvist, H. Olsson and M. Landin-Olsson, Are active sun exposure habits related to lowering risk of type 2 diabetes mellitus in women, a prospective cohort study?, Diabetes Res. Clin. Pract., 2010, 90(1), 109–114.

    Article  PubMed  Google Scholar 

  59. W. B. Grant and S. B. Mohr, Ecological studies of ultra-violet B, vitamin D and cancer since 2000, Ann. Epidemiol., 2009, 19(7), 446–454.

    Article  PubMed  Google Scholar 

  60. D. S. Grimes, E. Hindle and T. Dyer, Sunlight, cholesterol and coronary heart disease, QJM, 1996, 89(8), 579–589.

    Article  CAS  PubMed  Google Scholar 

  61. A. Wong, Incident solar radiation and coronary heart disease mortality rates in Europe, Eur. J. Epidemiol., 2008, 23(9), 609–614.

    Article  PubMed  Google Scholar 

  62. J. Iwamoto, T. Takeda and H. Matsumoto, Sunlight exposure is important for preventing hip fractures in patients with Alzheimer’s disease, Parkinson’s disease, or stroke, Acta Neurol. Scand., 2012, 125(4), 279–284.

    Article  CAS  PubMed  Google Scholar 

  63. G. M. Allan, {etet al.}, Vitamin D: A Narrative Review Examining the Evidence for Ten Beliefs, J. Gen. Intern. Med., 2016, 31(7), 780–791.

    Article  PubMed  PubMed Central  Google Scholar 

  64. P. Greguss, Low-level laser therapy—reality or myth?, Opt. Laser Technol., 1984, 16(2), 81–85.

    Article  Google Scholar 

  65. T. Karu, Molecular mechanism of the therapeutic effect of low-intensity laser radiation, Lasers Life Sci., 1988, 2(1), 53–74.

    Google Scholar 

  66. M. Devor, What’s in a laser beam for pain therapy?, Pain, 1990, 43(2), 139.

    Article  Google Scholar 

  67. T. Ohshiro, Terminology… Again, Laser Ther., 1990, 2(3), 99–100.

    Article  Google Scholar 

  68. K. C. Smith, Laser and led photobiology, Laser Ther., 2010, 19(2), 72–78.

    Article  Google Scholar 

  69. R. A. Brochetti, {etet al.}, Photobiomodulation therapy improves both inflammatory and fibrotic parameters in experimental model of lung fibrosis in mice, Lasers Med. Sci., 2017, 32(8), 1825–1834.

    Article  PubMed  Google Scholar 

  70. T. Henderson and L. Morries, http://www.westword.com/news/colorado-doctors-using-lasers-as-a-weapon-against-tbi-other-brain-injuries-9223729, 2017 [cited 2018 Mar 26].

  71. F. Salehpour, {etet al.}, Brain Photobiomodulation Therapy: a Narrative Review, Mol. Neurobiol., 2018, 55(8), 6601–6636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. D. Haina, {etet al.}, Animal experiments on light-induced woundhealing, in Optoelectronics in Medicine, Springer, 1982, pp. 164–169.

    Chapter  Google Scholar 

  73. P. Y. Mul'diyarov and V. Tsurko, Effect of monochromatic red light of a helium-neon laser on the morphology of zymosan arthritis in rats, Bull. Exp. Biol. Med., 1983, 95(1), 140–143.

    Article  Google Scholar 

  74. T. Berki, P. Nemeth and J. Hegedüs, Biological effect of low-power helium-neon (HeNe) laser irradiation, Lasers Med. Sci., 1988, 3(1-4), 35–39.

    Article  Google Scholar 

  75. M. Rosner, {etet al.}, Dose and temporal parameters in delaying injured optic nerve degeneration by low-energy laser irradiation, Lasers Surg. Med., 1993, 13(6), 611–617.

    Article  CAS  PubMed  Google Scholar 

  76. E. L. Laakso, {etet al.}, Plasma acth and p-endorphin levels in response to low level laser therapy (LLLT) for myofascial trigger points, Laser Ther., 1994, 6(3), 133–141.

    Article  Google Scholar 

  77. C. Antipa, {etet al.}, Low-power coherent and noncoherent light in clinical practice, in Effects of Low-Power Light on Biological Systems II, International Society for Optics and Photonics, 1996.

    Google Scholar 

  78. L. Campos, {etet al.}, Comparative study among three different phototherapy protocols to treat chemotherapy-induced oral mucositis in hamsters, J. Biophotonics, 2016, 9(11-12), 1236–1245.

    Article  CAS  PubMed  Google Scholar 

  79. R. Freire Mdo, {etet al.}, LED and laser photobiomodulation in the prevention and treatment of oral mucositis: experi-mental study in hamsters, Clin. Oral Investig., 2014, 18(3), 1005–1013.

    Article  PubMed  Google Scholar 

  80. N. Nadur-Andrade, {etet al.}, Photobiostimulation reduces edema formation induced in mice by Lys-49 phospho-lipases A2 isolated from Bothrops moojeni venom, Photochem. Photobiol. Sci., 2014, 13(11), 1561–1567.

    Article  CAS  PubMed  Google Scholar 

  81. N. Nadur-Andrade, {etet al.}, Effects of photobiostimulation on edema and hemorrhage induced by Bothrops moojeni venom, Lasers Med. Sci., 2012, 27(1), 65–70.

    Article  PubMed  Google Scholar 

  82. T. N. Demidova-Rice, {etet al.}, Low-level light stimulates exci-sional wound healing in mice, Lasers Surg. Med., 2007, 39(9), 706–715.

    Article  PubMed  PubMed Central  Google Scholar 

  83. C. R. Comunian, {etet al.}, Photobiomodulation with LED and laser in repair of mandibular socket rabbit: clinical evaluation, histological, and histomorphometric, Oral Maxillofac. Surg., 2017, 21(2), 201–206.

    Article  PubMed  Google Scholar 

  84. M. A. Takhtfooladi and D. Sharifi, A comparative study of red and blue light-emitting diodes and low-level laser in regeneration of the transected sciatic nerve after an end to end neurorrhaphy in rabbits, Lasers Med. Sci., 2015, 30(9), 2319–2324.

    Article  PubMed  Google Scholar 

  85. C. B. Rosa, {etet al.}, Laser and LED phototherapy on midpa-latal suture after rapid maxilla expansion: Raman and histological analysis, Lasers Med. Sci., 2017, 32(2), 263–274.

    Article  PubMed  Google Scholar 

  86. P. C. Silveira, {etet al.}, Effect of Low-Power Laser (LPL) and Light-Emitting Diode (LED) on Inflammatory Response in Burn Wound Healing, Inflammation, 2016, 39(4), 1395–1404.

    Article  CAS  PubMed  Google Scholar 

  87. F. B. de Carvalho, {etet al.}, Effect of laser (lambda 660 nm) and LED (lambda 630 nm) photobiomodulation on for-mocresol-induced oral ulcers: a clinical and histological study on rodents, Lasers Med. Sci., 2015, 30(1), 389–396.

    Article  PubMed  Google Scholar 

  88. T. El-Bialy, {etet al.}, The effect of light-emitting diode and laser on mandibular growth in rats, Angle Orthod., 2015, 85(2), 233–238.

    Article  PubMed  Google Scholar 

  89. I. C. de Castro, {etet al.}, Assessment of different energy deliv-ery settings in laser and LED phototherapies in the inflammatory process of rat's TMJ induced by carragee-nan, Lasers Med. Sci., 2015, 30(8), 2105–2113.

    Article  PubMed  Google Scholar 

  90. X. Wu, {etet al.}, Organic light emitting diode improves dia-betic cutaneous wound healing in rats, Wound Repair Regen., 2015, 23(1), 104–114.

    Article  PubMed  Google Scholar 

  91. I. C. De Castro, {etet al.}, Do laser and led phototherapies influence mast cells and myofibroblasts to produce col-lagen?, Lasers Med. Sci., 2014, 29(4), 1405–1410.

    Article  PubMed  Google Scholar 

  92. C. B. Rosa, {etet al.}, Effect of the laser and light-emitting diode (LED) phototherapy on midpalatal suture bone for-mation after rapid maxilla expansion: a Raman spec-troscopy analysis, Lasers Med. Sci., 2014, 29(3), 859–867.

    Article  PubMed  Google Scholar 

  93. A. P. de Sousa, {etet al.}, Laser and LED phototherapies on angiogenesis, Lasers Med. Sci., 2013, 28(3), 981–987.

    Article  PubMed  Google Scholar 

  94. R. D. A. D. Oliveira, {etet al.}, Low-intensity laser therapy and led (light emitting diode) therapy in mechanical resis-tance of Rattus norvegicus chest inscision with implant of steel wire for sternal suture, Rev. Bras. Eng. Biomed., 2013, 29, 166–174.

    Article  Google Scholar 

  95. S. C. Oliveira Sampaio, {etet al.}, Effect of laser and LED phototherapies on the healing of cutaneous wound on healthy and iron-deficient Wistar rats and their impact on fibroblastic activity during wound healing, Lasers Med. Sci., 2013, 28(3), 799–806.

    Article  PubMed  Google Scholar 

  96. I. C. V. De Castro, {etet al.}, Assessment of the effects of laser or LED photobiomodulation on hypothyroid rats of cutaneous wound healing: A morphometric study, AIP Conf. Proc., 2012, 1486(1), 95–99.

    Article  CAS  Google Scholar 

  97. M. A. Nishioka, {etet al.}, LED (660 nm) and laser (670 nm) use on skin flap viability: angiogenesis and mast cells on transition line, Lasers Med. Sci., 2012, 27(5), 1045–1050.

    Article  PubMed  Google Scholar 

  98. N. C. de Morais, {etet al.}, Anti-inflammatory effect of low-level laser and light-emitting diode in zymosan-induced arthritis, Photomed. Laser Surg., 2010, 28(2), 227–232.

    Article  PubMed  Google Scholar 

  99. M. A. Dall Agnol, {etet al.}, Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats, Lasers Med. Sci., 2009, 24(6), 909–916.

    Article  PubMed  Google Scholar 

  100. J. L. N. Bastos, R. F. Z. Lizarelli and N. A. Parizotto, Comparative study of laser and LED systems of low inten-sity applied to tendon healing, Laser Phys., 2009, 19(9), 1925–1931.

    Article  CAS  Google Scholar 

  101. A. V. Corazza, {etet al.}, Photobiomodulation on the angio-genesis of skin wounds in rats using different light sources, Photomed. Laser Surg., 2007, 25(2), 102–106.

    Article  PubMed  Google Scholar 

  102. G. I. Klebanov, {etet al.}, A comparative study of the effects of laser and LED radiation on lipid peroxidation in rat wound fluid, Biophysics, 2006, 51(2), 285–291.

    Article  Google Scholar 

  103. I. Khan and P. R. Arany, Photobiomodulation Therapy Promotes Expansion of Epithelial Colony Forming Units, Photomed. Laser Surg., 2016, 34(11), 550–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. M. T. Pagin, {etet al.}, Laser and light-emitting diode effects on pre-osteoblast growth and differentiation, Lasers Med. Sci., 2014, 29(1), 55–59.

    Article  PubMed  Google Scholar 

  105. R. Spitler and M. W. Berns, Comparison of laser and diode sources for acceleration of in vitro wound healing by low-level light therapy, J. Biomed. Opt., 2014, 19(3), 38001.

    Article  PubMed  Google Scholar 

  106. E. M. Vinck, {etet al.}, Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation, Lasers Med. Sci., 2003, 18(2), 95–99.

    Article  PubMed  Google Scholar 

  107. V. H. Panhoca, {etet al.}, Comparative clinical study of light analgesic effect on temporomandibular disorder (TMD) using red and infrared led therapy, Lasers Med. Sci., 2015, 30(2), 815–822.

    Article  PubMed  Google Scholar 

  108. A. C. Freitas, {etet al.}, Chemotherapy-induced oral mucositis: effect of LED and laser phototherapy treatment protocols, Photomed. Laser Surg., 2014, 32(2), 81–87.

    Article  PubMed  Google Scholar 

  109. T. A. Ammar, Monochromatic Infrared Photo Energy versus Low Level Laser Therapy in Patients with Knee Osteoarthritis, J. Lasers Med. Sci., 2014, 5(4), 176–182.

    PubMed  PubMed Central  Google Scholar 

  110. M. A. Esper, R. A. Nicolau and E. A. Arisawa, The effect of two phototherapy protocols on pain control in orthodon-tic procedure-a preliminary clinical study, Lasers Med. Sci., 2011, 26(5), 657–663.

    Article  PubMed  Google Scholar 

  111. R. F. Z. Lizarelli, {etet al.}, Dentin hypersensitivity clinical study comparing LILT and LEDT keeping the same irradiation parameters, Laser Phys. Lett., 2010, 7(11), 805–811.

    Article  Google Scholar 

  112. A. C. Lima, {etet al.}, Low-Level Laser and Light-Emitting Diode Therapy for Pain Control in Hyperglycemic and Normoglycemic Patients Who Underwent Coronary Bypass Surgery with Internal Mammary Artery Grafts: A Randomized, Double-Blind Study with Follow-Up, Photomed. Laser Surg., 2016, 34(6), 244–251.

    Article  CAS  PubMed  Google Scholar 

  113. E. C. Leal Junior, {etet al.}, Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise, Photomed. Laser Surg., 2009, 27(4), 617–623.

    Article  PubMed  Google Scholar 

  114. A. C. Lima, {etet al.}, Photobiomodulation (Laser and LED) on Sternotomy Healing in Hyperglycemic and Normoglycemic Patients Who Underwent Coronary Bypass Surgery with Internal Mammary Artery Grafts: A Randomized, Double-Blind Study with Follow-Up, Photomed. Laser Surg., 2017, 35(1), 24–31.

    Article  CAS  PubMed  Google Scholar 

  115. H. Araki, {etet al.}, Reduction of interleukin-6 expression in human synoviocytes and rheumatoid arthritis rat joints by linear polarized near infrared light (Superlizer) irradiation, Laser Ther., 2011, 20(4), 293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  116. D. Park, {etet al.}, Anti-hypercholesterolemic and anti-atherosclerotic effects of polarized-light therapy in rabbits fed a high-cholesterol diet, Lab. Anim. Res., 2012, 28(1), 39–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. G. D. Gale, P. J. Rothbart and Y. Li, Infrared therapy for chronic low back pain: a randomized, controlled trial, Pain Res. Manage., 2006, 11(3), 193–196.

    Article  Google Scholar 

  118. S. Monstrey, {etet al.}, A conservative approach for deep dermal burn wounds using polarised-light therapy, Br. J. Plast. Surg., 2002, 55(5), 420–426.

    Article  CAS  PubMed  Google Scholar 

  119. P. C. Oliveira, {etet al.}, The use of light photobiomodulation on the treatment of second-degree burns: a histological study of a rodent model, Photomed. Laser Surg., 2008, 26(4), 289–299.

    Article  PubMed  Google Scholar 

  120. C. A. Karadag, {etet al.}, The efficacy of linear polarized poly-chromatic light on burn wound healing: an experimental study on rats, J. Burn Care Res., 2007, 28(2), 291–298.

    Article  PubMed  Google Scholar 

  121. T. Hiratsuka, {etet al.}, Phototherapy with artificial light suppresses dextran sulfate sodium-induced colitis in a mouse model, J. Gastroenterol. Hepatol., 2014, 29(4), 749–756.

    Article  CAS  PubMed  Google Scholar 

  122. A. Wunsch and K. Matuschka, A controlled trial to deter-mine the efficacy of red and near-infrared light treatment in patient satisfaction, reduction of fine lines, wrinkles, skin roughness, and intradermal collagen density increase, Photomed. Laser Surg., 2014, 32(2), 93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. M. Hartel, {etet al.}, Randomized clinical trial of the influ-ence of local water-filtered infrared A irradiation on wound healing after abdominal surgery, Br. J. Surg., 2006, 93(8), 952–960.

    Article  CAS  PubMed  Google Scholar 

  124. J. L. Medeiros, {etet al.}, Healing of surgical wounds made with lambda970-nm diode laser associated or not with laser phototherapy (lambda655 nm) or polarized light (lambda400-2000 nm), Photomed. Laser Surg., 2010, 28(4), 489–496.

    Article  PubMed  Google Scholar 

  125. D. Stasinopoulos, {etet al.}, Comparing the effects of exercise program and low-level laser therapy with exercise program and polarized polychromatic non-coherent light (bioptron light) on the treatment of lateral elbow tendinopathy, Photomed. Laser Surg., 2009, 27(3), 513–520.

    Article  PubMed  Google Scholar 

  126. D. Stasinopoulos, The use of polarized polychromatic non-coherent light as therapy for acute tennis elbow/ lateral epicondylalgia: a pilot study, Photomed. Laser Surg., 2005, 23(1), 66–69.

    Article  PubMed  Google Scholar 

  127. R. Lubart, {etet al.}, A new approach to ulcer treatment using broadband visible light, Laser Ther., 2007, 16(1), 7–10.

    Article  Google Scholar 

  128. S. Monstrey, {etet al.}, The effect of polarized light on wound healing, Eur. J. Plast. Surg., 2002, 24(8), 377–382.

    Article  Google Scholar 

  129. A. L. Pinheiro, {etet al.}, Biomodulative effects of polarized light on the healing of cutaneous wounds on nourished and undernourished Wistar rats, Photomed. Laser Surg., 2006, 24(5), 616–624.

    Article  PubMed  Google Scholar 

  130. F. A. Al-Watban and B. L. Andres, Polychromatic LED in oval full-thickness wound healing in non-diabetic and diabetic rats, Photomed. Laser Surg., 2006, 24(1), 10–16.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

MRH was supported by US-NIH grants R01AI050875 and R21AI121700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hamblin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiskanen, V., Hamblin, M.R. Photobiomodulation: lasers vs. light emitting diodes?. Photochem Photobiol Sci 17, 1003–1017 (2018). https://doi.org/10.1039/c8pp00176f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00176f

Navigation