Skip to main content

Advertisement

Log in

Structure—activity relationship of porphyrin-induced photoinactivation with membrane function in bacteria and erythrocytes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We analyzed the structure–activity relationship of porphyrins with the photoinactivation of membrane function in bacteria and erythrocytes. The porphyrins tested were protoporphyrin (PP), mesoporphyrin (MP), deuteroporphyrin (DP), hematoporphyrin (HP), coproporphyrin (CP) and uroporphyrin (UP), along with hematoporphyrin derivative (HPD) and photofrin (PF). These porphyrins dissipated membrane potential of Staphylococcus aureus cells depending on the degrees of respiratory inhibition and K+ leakage. The dysfunction of bacterial membrane was caused within minutes and in the order of PP ~ MP > DP > HPD ≫ HP > PF > CP ~ UP. For bovine erythrocytes, these porphyrins induced leakage of K+ and inhibition of the enzyme acetylcholinesterase, which is located on the outer layer of the erythrocyte membrane, in the same order as that observed in bacteria. At high concentrations of PP, MP, DP and HPD, hemolysis (the lysis of erythrocytes with liberation of hemoglobin) was also induced. We found that the degree of photoinactivation of membrane function was closely associated with porphyrin-induced morphological changes in bovine erythrocytes, forming a crenated form from the normal discoid, which is the index of the amount of porphyrins in the outer layer of the cytoplasmic membrane. Furthermore, the degree of morphological changes was related with the octanol/water partition coefficients of porphyrins. These results strongly supported that porphyrins located in the outer layer of cytoplasmic membrane inactivated the cell membrane function by photo-irradiation, and the strength of photoinactivation by porphyrins depended on their affinity to the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Luksiene and A. Zukauskas, Prospects of photosensitization in control of pathogenic and harmful micro-organisms, J. Appl. Microbiol., 2009, 107, 1415–1424.

    Article  CAS  PubMed  Google Scholar 

  2. W. Dietel, R. Pottier, W. Pfister, P. Schleier and K. Zinner, 5-Aminolaevulinic acid (ALA) induced formation of different fluorescent porphyrins: a study of the biosynthesis of porphyrins by bacteria of the human digestive tract, J. Photochem. Photobiol., B, 2007, 86, 77–86.

    Article  CAS  Google Scholar 

  3. A. De Paolis, S. Chandra, A. A. Charalambides, R. Bonnett and I. A. Magnus, The effect on photohaemolysis of variation in the structure of the porphyrin photosensitizer, Biochem. J., 1984, 226, 757–766.

    Article  Google Scholar 

  4. G. Jori and S. B. Brown, Photosensitized inactivation of microorganisms, Photochem. Photobiol. Sci., 2004, 3, 403–405.

    Article  CAS  PubMed  Google Scholar 

  5. S. Chakraborti, Interaction of porphyrins with heme proteins-a brief review, Mol. Cell. Biochem., 2003, 253, 49–54.

    Article  CAS  PubMed  Google Scholar 

  6. G. Stark, Functional consequences of oxidative damage, J. Membr. Biol., 2005, 205, 1–16.

    Article  CAS  PubMed  Google Scholar 

  7. L. V. Chekulayeva, I. N. Shevchunk, V. A. Chekulayev and K. Ilmarinen, Hydrogen peroxide, superoxide, and hydroxyl radicals are involved in the phototoxic action of hematoporphyrin derivative against tumor cells, J. Environ. Pathol., Toxicol. Oncol., 2006, 25, 51–77.

    Article  CAS  Google Scholar 

  8. A. Almeida, M. A. F. Faustino and J. P. C. Tomé, Photodynamic inactivation of bacteria: finding the effective targets, Future Med. Chem., 2015, 7, 1221–1224.

    Article  CAS  PubMed  Google Scholar 

  9. E. Alves, M. A. F. Faustino, M. G. P. M. S. Neves, A. Cunha, J. Tome and A. Almeida, An insight on bacterial cellular targets of photodynamic inactivation, Future Med. Chem., 2014, 6, 141–164.

    Article  CAS  PubMed  Google Scholar 

  10. H. Thadani, A. Deacon and T. Peters, Diagnosis and management of porphyria, Br. Med. J., 2000, 320, 1647–1651.

    Article  CAS  Google Scholar 

  11. W. M. Sharman, C. M. Allen and J. E. van Lier, Photodynamic therapeutics: basic principles and clinical applications, Drug Discovery Today, 1999, 4, 507–517.

    Article  CAS  PubMed  Google Scholar 

  12. H. Abrahamse and M. R. Hamblin, New photosensitizers for photodynamic therapy, Biochem. J., 2016, 473, 347–364.

    Article  CAS  PubMed  Google Scholar 

  13. B. J. Quirk, G. Brandal, S. Donlon, J. C. Vera, T. S. Mang, A. B. Foy, S. M. Lew, A. W. Girotti, S. Jogal, P. S. LaViolette and J. M. Connelly, Photodynamic therapy (PDT) for malignant brain tumors - Where do we stand?, Photodiagn. Photodyn. Ther., 2015, 12, 530–544.

    Article  Google Scholar 

  14. Photofrin (porpfimer sodium) injection, https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020451s020lbl.pdf

  15. A. W. Giroti, Mechanisms of photosensitization, Photochem. Photobiol., 1983, 38, 745–751.

    Article  Google Scholar 

  16. D. Kessel, P. Thompson, B. Musselman and C. K. Chang, Chemistry of hematoporphyrin-derived photosensitization, Photochem. Photobiol., 1987, 46, 563–568.

    Article  CAS  PubMed  Google Scholar 

  17. J. Moan and D. Kessel, Photoproducts formed from photofrin II in cells, J. Photochem. Photobiol., B, 1988, 1, 429–436.

    Article  CAS  Google Scholar 

  18. Y. Nitzan, B. Shainberg and Z. Malik, The mechanism of photodynamic inactivation of Staphylococcus aureus by deuteroporphyrin, Curr. Microbiol., 1989, 19, 265–269.

    Article  CAS  Google Scholar 

  19. M. R. Hamblin and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. Almeida, J. P. Tomé, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, Â. Cunha, L. Costa, M. A. Faustino and A. Almeida, Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics, Photochem. Photobiol. Sci., 2014, 13, 626–633.

    Article  CAS  PubMed  Google Scholar 

  21. T. Dai, Y. Huang and M. R. Hamblin, Photodynamic therapy for localized infections—state of the art, Photodiagn. Photodyn. Ther., 2009, 6, 170–188.

    Article  CAS  Google Scholar 

  22. G. B. Kharkwal, S. K. Sharma, Y. Huang, T. Dai and M. R. Hamblin, Photodynamic therapy for infections: clinical applications, Lasers Surg. Med., 2011, 43, 755–767.

    Article  PubMed  PubMed Central  Google Scholar 

  23. E. N. Durantini, Photodynamic inactivation of bacteria, Curr. Bioact. Compd., 2006, 2, 127–142.

    Article  CAS  Google Scholar 

  24. Y. Nitzen, S. Gozhansky and Z. Malik, Effect of photoactivated hematoporphyrin derivative on the viability of Staphlococcus aureus, Curr. Microbiol., 1983, 8, 279–284.

    Article  Google Scholar 

  25. K. Komagoe, H. Kato, T. Inoue and T. Katsu, Continuous real-time monitoring of cationic porphyrin-induced photodynamic inactivation of bacterial membrane functions using electrochemical sensors, Photochem. Photobiol. Sci., 2011, 10, 1181–1188.

    Article  CAS  PubMed  Google Scholar 

  26. H. Kato, K. Komagoe, Y. Nakanishi, T. Inoue and T. Katsu, Xanthene dyes induce membrane permeabilization of bacteria and erythrocytes by photoinactivation, Photochem. Photobiol., 2012, 88, 423–431.

    Article  CAS  PubMed  Google Scholar 

  27. H. Kato, K. Komagoe, T. Inoue and T. Katsu, In situ monitoring of photodynamic inactivation of the membrane functions of bacteria using electrochemical sensors, Anal. Sci., 2010, 26, 1019–1021.

    Article  CAS  PubMed  Google Scholar 

  28. H. Igisu, H. Matsumura and M. Matsuoka, Acetylcholinesterase in the erythrocyte membrane, J. UOEH, 1994, 16, 253–262.

    Article  CAS  PubMed  Google Scholar 

  29. S. Banfi, E. Caruso, L. Buccafurni, V. Battini, S. Zazzaron, P. Barbieri and V. Orlandi, Antibacterial activity of tetraaryl-porphyrin photosensitizers: an in vitro study on Gram negative and Gram positive bacteria, J. Photochem. Photobiol., B, 1996, 32, 153–157.

    Article  Google Scholar 

  30. R. W. Treharne, Light intensity measurement; characteristics of light sources; filters and monochromators, Methods Enzymol., 1972, 24, 268–293.

    Article  CAS  PubMed  Google Scholar 

  31. K. Komagoe, H. Takeuchi and T. Katsu, Oxygen electrode as a new tool to evaluate hydroxyl radical-scavenging ability, Sens. Actuators, B, 2008, 134, 516–520.

    Article  CAS  Google Scholar 

  32. K. Komagoe, H. Takeuchi, T. Inoue and T. Katsu, Application of an oxygen electrode to evaluate superoxide anion-scavenging ability, Anal. Sci., 2010, 26, 903–906.

    Article  CAS  PubMed  Google Scholar 

  33. T. Tsuchiya and B. P. Rosen, Respiratory control in Escherichia coli, FEBS Lett., 1980, 120, 128–130.

    Article  CAS  PubMed  Google Scholar 

  34. T. Katsu, H. Kobayashi and Y. Fujita, Mode of action of gramicidin S on Escherichia coli membrane, Biochim. Biophys. Acta, Biomembr., 1986, 860, 608–619.

    Article  CAS  Google Scholar 

  35. T. Katsu and K. Nakashima, Simultaneous determination of changes in the permeability of two different liposomes mimicking bacterial and eukaryotic cellmembranes using ion-selective electrodes, Analyst, 1999, 124, 883–886.

    Article  CAS  Google Scholar 

  36. C. Ohmizo, M. Yata and T. Katsu, Bacterial cytoplasmic membrane permeability assay using ion-selective electrodes, J. Microbiol. Methods, 2004, 59, 173–179.

    Article  CAS  PubMed  Google Scholar 

  37. H. B. Collier, Factors affecting the hemolytic action of” lysolecithin” upon rabbit erythrocytes, J. Gen. Physiol., 1993, 35, 617–628.

    Article  Google Scholar 

  38. T. Katsu, S. Nakao and S. Iwanaga, Mode of action of antimicrobial peptide tachyplesin I on biomembranes, Biol. Pharm. Bull., 1993, 16, 178–181.

    Article  CAS  PubMed  Google Scholar 

  39. F. Worek, U. Mast, D. Kiderlen, C. Diepold and P. Eyer, Improved determination of acetylcholinesterase activity in human whole blood, Clin. Chim. Acta, 1999, 288, 73–90.

    Article  CAS  PubMed  Google Scholar 

  40. S. Nakao, K. Komagoe, T. Inoue and T. Katsu, Comparative study of the membrane-permeabilizing activities of mastoparans and related histamine-releasing agents in bacteria, erythrocytes, and mast cells, Biochim. Biophys. Acta, 2011, 1808, 490–497.

    Article  CAS  PubMed  Google Scholar 

  41. T. Fujii, T. Saito, A. Tamura, M. Wakatsuki and Y. Kanaho, Shape changes of human erythrocytes induced by various amphipathic drugs acting on the membrane of the intact cells, Biochem. Pharmacol., 1979, 28, 613–620.

    Article  CAS  PubMed  Google Scholar 

  42. J. E. Smith, N. Mohandas and S. B. Shohet, Interaction of amphipathic drugs with erythrocytes from various species, Am. J. Vet. Res., 1982, 43, 1041–1048.

    CAS  PubMed  Google Scholar 

  43. F. Amat-Guerri, A. Pajares, J. Gianotti, E. Haggi, G. Stettler, S. Bertolotti, S. Miskoski and N. A. Garcia, Singlet molecular oxygen-mediated photooxidation of 2-substituted 3-hydroxypyridines, J. Photochem. Photobiol., A, 1999, 126, 59–64.

    Article  CAS  Google Scholar 

  44. J. A. Silverman, N. G. Perlmutter and H. M. Shapiro, Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus, Antimicrob. Agents Chemother., 2003, 47, 2538–2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M. P. Sheetz and S. J. Singer, Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions, Proc. Natl. Acad. Sci. U. S. A., 1974, 71, 4457–4461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. K. Komagoe and T. Katsu, Porphyrin-induced photogeneration of hydrogen peroxide determined using the luminol chemiluminescence method in aqueous solution: a structure-activity relationship study related to the aggregation of porphyrin, Anal. Sci., 2006, 22, 255–258.

    Article  CAS  PubMed  Google Scholar 

  47. J. Moan, The photochemical yield of singlet oxygen from porphyrins in different states of aggregation, Photochem. Photobiol., 1984, 39, 445–449.

    Article  CAS  Google Scholar 

  48. L. M. Rossi, P. R. Silva, L. L. R. Vono, A. U. Fernandes, D. B. Tada and M. S. Baptista, Protoporphyrin IX nanoparticle carrier: preparation, optical properties, and singlet oxygen generation, Langmuir, 2008, 24, 12534–12538.

    Article  CAS  PubMed  Google Scholar 

  49. C. Tanielian, C. Schweitzer, R. Mechin and C. Wolff, Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative, Free Radicals Biol. Med., 2001, 30, 208–212.

    Article  CAS  Google Scholar 

  50. Y. Nitzan, B. Shainberg and Z. Malik, Photodynamic effects of deuteroporphyrin on gram-positive bacteria, Curr. Microbiol., 1987, 15, 251–258.

    Article  CAS  Google Scholar 

  51. S. Karrer, R.-M. Szeimies, S. Ernst, C. Abels, W. Bäumler and M. Landthaler, Photodynamic inactivation of Staphylococci with 5-aminolaevulinic acid or photofrin, Lasers Med. Sci., 1999, 14, 54–61.

    Article  CAS  PubMed  Google Scholar 

  52. M. Tanaka, M. Kinoshita, Y. Yoshihara, N. Shinomiya, S. Seki, K. Nemoto, M. R. Hamblin and Y. Morimoto, Photodynamic therapy using intra-articular photofrin for murine MRSA arthritis: biphasic light dose response for neutrophil-mediated antibacterial effect, Lasers Surg. Med., 2011, 43, 221–229.

    Article  PubMed  PubMed Central  Google Scholar 

  53. L. Huang, G. Szewczyk, T. Sarna and M. R. Hamblin, Potassium iodide potentiates broad-spectrum antimicrobial photodynamic inactivation using photofrin, ACS Infect. Dis., 2017, 3, 320–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. M. Grinholc, B. Szramka, K. Olender and A. Graczyk, Bactericidal effect of photodynamic therapy against methicillin-resistant Staphylococcus aureus strain with the use of various porphyrin photosensitizers, Acta Biochim. Pol., 2007, 54, 665–670.

    Article  CAS  PubMed  Google Scholar 

  55. F. Vedel, É. Lalanne, M. Sabar, P. Chétrit and R. De Paepe, The mitochondrial respiratory chain and ATP synthase complexes: composition, structure and mutational studies, Plant Physiol. Biochem., 1999, 37, 629–643.

    Article  CAS  Google Scholar 

  56. M. Rotenberg and R. Margalit, Porphyrin-membrane interactions: binding or partition?, Biochim. Biophys. Acta, 1987, 905, 173–180.

    Article  CAS  PubMed  Google Scholar 

  57. M. Kępczyński, R. P. Pandian, K. M. Smith and B. Ehrenberg, Do liposome-binding constants of porphyrins correlate with their measured and predicted partitioning between octanol and water?, Photochem. Photobiol., 2002, 76, 127–134.

    Article  PubMed  Google Scholar 

  58. R. M. Soares, Y. Thanaiah, M. Taniguchia and J. S. Lindsey, Aqueous–membrane partitioning of β-substituted porphyrins encompassing diverse polarity, New J. Chem., 2013, 37, 1087–1097.

    Article  CAS  Google Scholar 

  59. B. Isomaa, H. Hägerstrand, G. Paatero and A. C. Engblom, Permeability alterations and antihaemolysis induced by amphiphiles in human erythrocytes, Biochim. Biophys. Acta, 1986, 860, 510–524.

    Article  CAS  PubMed  Google Scholar 

  60. B. Isomaa, H. Hägerstrand and G. Paatero, Shape transformations induced by amphiphiles in erythrocytes, Biochim. Biophys. Acta, 1987, 899, 93–103.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Kana Miyamoto who carried out some of the preliminary experiments that were extended in this study. We are grateful to Ms Yuka Nakanishi for technical assistance. This work was supported by a Grant-in-Aid for Scientific Research (KAKENHI 25460036) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisato Kato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, H., Komagoe, K., Inoue, T. et al. Structure—activity relationship of porphyrin-induced photoinactivation with membrane function in bacteria and erythrocytes. Photochem Photobiol Sci 17, 954–963 (2018). https://doi.org/10.1039/c8pp00092a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00092a

Navigation