Skip to main content
Log in

The mechanism of photocatalytic CO2 reduction by graphene-supported Cu2O probed by sacrificial electron donors

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Cu2O nanoparticles of 5 nm average size have been adsorbed (1.74 wt% loading) on defective graphene (Cu2O/G) previously obtained by the pyrolysis of alginic acid sodium salt. The Cu2O crystal phase was determined by XRD. XPS shows that the external layers of the Cu2O nanoparticles are constituted mainly of Cu+ although a certain percentage of CuII+ was also present. Cu2O/G is a photocatalyst for the CO2 reduction to methane in the presence of sacrificial agents, and the rate of CH4 production depends on the oxidation potential of the electron donor. This relationship supports a mechanism involving photo-induced charge separation with the generation of electrons and holes. The highest CH4 formation rate upon UV-Vis irradiation of Cu2O/G with a 300 W Xe lamp was achieved for dimethylaniline reaching 326 µmol CH4 per g per h. The spectral response of the Cu2O photocatalyst shows, however, that the response of the photocatalyst is mainly due to UV irradiation, indicating that light absorption at the low Cu2O loading on the Cu2O/G photocatalyst occurs mainly on the graphene component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu and J. Sun, Nat. Commun., 2017, 8, 15174.

    Article  Google Scholar 

  2. O. Ola, M. Mercedes Maroto-Valer and S. Mackintosh, Energy Procedia, 2013, 37, 6704–6709.

    Article  CAS  Google Scholar 

  3. C. Peng, G. Reid, H. Wang and P. Hu, J. Chem. Phys., 2017, 147, 030901.

    Article  Google Scholar 

  4. G. Zhao, X. Huang, X. Wang and X. Wang, J. Mater. Chem. A, 2017, 5, 21625–21649.

    Article  CAS  Google Scholar 

  5. F. E. Osterloh, ACS Energy Lett., 2017, 2, 445–453.

    Article  CAS  Google Scholar 

  6. N. S. Lewis, Nat. Nanotechnol., 2016, 11, 1010.

    Article  CAS  Google Scholar 

  7. Q. Xu and T. Kobayashi, Advanced Materials for Clean Energy, Boca Raton, CRC Press, 2015.

    Book  Google Scholar 

  8. D. Mateo, I. Esteve-Adell, J. Albero, A. Primo and H. García, Appl. Catai., B, 2017, 201, 582–590.

    Article  CAS  Google Scholar 

  9. D. Mateo, J. Albero and H. Garcia, Energy Environ. Sci., 2017, 10, 2392–2400.

    Article  CAS  Google Scholar 

  10. Z. Han and R. Eisenberg, Acc. Chem. Res., 2014, 47, 2537–2544.

    Article  CAS  Google Scholar 

  11. C. Lavorato, A. Primo, R. Molinari and H. García, ACS Catal., 2014, 4, 497–504.

    Article  CAS  Google Scholar 

  12. M.-M. Trandafir, M. Florea, F. Neatu, A. Primo, V. I. Parvulescu and H. García, ChemSusChem, 2016, 9, 1565–1569.

    Article  CAS  Google Scholar 

  13. A. Primo, F. Neatu, M. Florea, V. Parvulescu and H. Garcia, Nat. Commun., 2014, 5, 5291.

    Article  CAS  Google Scholar 

  14. S. Liu, M.-Q. Yang, N. Zhang and Y.-J. Xu, J. Energy Chem., 2014, 23, 145–155.

    Article  Google Scholar 

  15. A. L. Patterson, Phys. Rev., 1939, 56, 978–982.

    Article  CAS  Google Scholar 

  16. E. Karamian and S. Sharifnia, J. CO2 Util., 2016, 16, 194–203.

    Article  CAS  Google Scholar 

  17. Y. Xu and M. A. A. Schoonen, Am. Mineral., 2000, 85, 543–556.

    Article  CAS  Google Scholar 

  18. O. Leenaerts, B. Partoens, F. M. Peeters, A. Volodin and C. V. Haesendonck, J. Phys.: Condens. Matter, 2017, 29, 035003.

    CAS  Google Scholar 

  19. J. Ran, J. Zhang, J. Yu, M. Jaroniec and S. Z. Qiao, Chem. Soc. Rev., 2014, 43, 7787–7812.

    Article  CAS  Google Scholar 

  20. C. Lavorato, A. Primo, R. Molinari and H. Garcia, Chem. - Eur. J., 2014, 20, 187–194.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016-0683, GRAPAS, and CTQ2015-69563-CO2-R1) and the Generalitat Valenciana (Prometeo 2015-083) is gratefully acknowledged. J. A. thanks the Universitat Politècnica de València for a postdoctoral scholarship. D. M. also thanks the Spanish Ministry of Science for the PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermenegildo García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateo, D., Asiri, A.M., Albero, J. et al. The mechanism of photocatalytic CO2 reduction by graphene-supported Cu2O probed by sacrificial electron donors. Photochem Photobiol Sci 17, 829–834 (2018). https://doi.org/10.1039/c7pp00442g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00442g

Navigation