Skip to main content
Log in

A new Schiff-base chemosensor for selective detection of Cu2+ and Co2+ and its copper complex for colorimetric sensing of S2− in aqueous solution

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A new Schiff-base colorimetric chemosensor 1 was developed for the detection of Cu2+, Co2+ and S2−. Sensor 1 could simply monitor Cu2+ and Co2+ by a color change from colorless to yellow. The binding modes of 1 to Cu2+ and Co2+ were determined to be a 2: 1 complexation stoichiometry through Job’s plot and ESI-mass spectrometry analysis. The detection limits (0.02 μM and 0.63 μM) for Cu2+ and Co2+ were lower than the recommended values (31.5 μM and 1.7 μM) by the World Health Organization (WHO) for Cu2+ and the Environmental Protection Agency (EPA) for Co2+, respectively. Importantly, 1 could detect and quantify Cu2+ in real water samples. In addition, the Cu2+-2·1 complex could be used as a highly selective colorimetric sensor for S2− in the presence of other anions without any interference. Moreover, the sensing mechanisms of Cu2+ and Co2+ by 1 were explained by theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Cotruvo Jr., A. T. Aron, K. M. Ramos-Torres, and C. J. Chang, Synthetic fluorescent probes for studying copper in biological systems, Chem. Soc. Rev., 2015, 44, 4400–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. K. Kaur, R. Saini, A. Kumar, V. Luxami, N. Kaur, P. Singh, and S. Kumar, Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols, Coord. Chem. Rev., 2012, 256, 1992–2028.

    Article  CAS  Google Scholar 

  3. W. Wang, A. Fu, J. You, G. Gao, J. Lan, and L. Chen, Squaraine-based colorimetric and fluorescent sensors for Cu2+-specific detection and fluorescence imaging in living cells, Tetrahedron., 2010, 66, 3695–3701.

    Article  CAS  Google Scholar 

  4. P. Kaur, S. Kaur, and K. Singh, Colorimetric detection of cyanide in water using a highly selective Cu2+ chemosensor, Inorg. Chem. Commun., 2009, 12, 978–981.

    Article  CAS  Google Scholar 

  5. K. J. Barnham, C. L. Masters, and A. I. Bush, Neurodegenerative diseases and oxidative stress, Nat. Rev. Drug Discovery., 2004, 3, 205–214.

    Article  CAS  PubMed  Google Scholar 

  6. Y. K. Jang, U. C. Nam, H. L. Kwon, I. H. Hwang, and C. Kim, A selective colorimetric and fluorescent chemosensor based-on naphthol for detection of Al3+ and Cu2+, Dyes Pigm., 2013, 99, 6–13.

    Article  CAS  Google Scholar 

  7. S. Goswami, D. Sen, N. K. Das, and G. Hazra, Highly selective colorimetric fluorescence sensor for Cu2+: cation-induced “switching on” of fluorescence due to excited state internal charge transfer in the red/near-infrared region of emission spectra, Tetrahedron Lett., 2010, 51, 5563–5566.

    Article  CAS  Google Scholar 

  8. S. Yin, V. Leen, S. Van Snick, N. Boens, and W. Dehaen, A highly sensitive, selective, colorimetric and near-infrared fluorescent turn-on chemosensor for Cu2+ based on BODIPY, Chem. Commun., 2010, 46, 6329–6331.

    Article  CAS  Google Scholar 

  9. H. S. Jung, P. S. Kwon, J. W. Lee, J. Il Kim, C. S. Hong, J. W. Kim, S. Yan, J. Y. Lee, J. H. Lee, T. Joo, and J. S. Kim, Coumarin-Derived Cu2+ -Selective Fluorescence Sensor: Synthesis, Mechanisms, and Applications in Living Cells, J. Am. Chem. Soc., 2009, 131, 2008–2012.

    Article  CAS  PubMed  Google Scholar 

  10. D. Maity, A. Raj, D. Karthigeyan, T. K. Kundu, T. Govindaraju, C. J. McKenzie, K. D. Karlin, and C. J. Fahrni, Reaction-based probes for Co(II) and Cu(I) with dual output modes: fluorescence live cell imaging, RSC Adv., 2013, 3, 16788–16794.

    Article  CAS  Google Scholar 

  11. C.-Y. Li, X.-B. Zhang, Z. Jin, R. Han, G.-L. Shen, and R.-Q. Yu, A fluorescent chemosensor for cobalt ions based on a multi-substituted phenol-ruthenium(II) tris(bipyridine) complex, Anal. Chim. Acta., 2006, 580, 143–148.

    Article  CAS  PubMed  Google Scholar 

  12. K. Al-Habsi, E. H. Johnson, I. T. Kadim, A. Srikandakumar, K. Annamalai, R. Al-Busaidy, and O. Mahgoub, Effects of low concentrations of dietary cobalt on liveweight gains, haematology, serum vitamin B12 and biochemistry of Omani goats, Vet. J., 2007, 173, 131–137.

    Article  CAS  PubMed  Google Scholar 

  13. A. Frank, J. McPartlin, and R. Danielsson, Nova Scotia moose mystery-a moose sickness related to cobalt- and vitamin B12 deficiency, Sci. Total Environ., 2004, 318, 89–100.

    Article  CAS  PubMed  Google Scholar 

  14. K. Y. Ryu, S. Y. Lee, D. Y. Park, S. Y. Kim, and C. Kim, A novel colorimetric chemosensor for detection of Co2+ and S2− in an aqueous environment, Sens. Actuators, B., 2017, 242, 792–800.

    Article  CAS  Google Scholar 

  15. E. J. Song, G. J. Park, J. J. Lee, S. Lee, I. Noh, Y. Kim, S. J. Kim, C. Kim, and R. G. Harrison, A fluorescence sensor for Zn2+ that also acts as a visible sensor for Co2+ and Cu2+, Sens. Actuators, B., 2015, 213, 268–275.

    Article  CAS  Google Scholar 

  16. J. H. Ye, L. J. Duan, and L. L. Jin, A Fluorescence Sensor for Cu2+ and Co2+ Based on Click-Generated Triazole Moiety, Adv. Mater. Res., 2012, 554–556, 2045–2048.

    Article  CAS  Google Scholar 

  17. L. Tang, M. Cai, Z. Huang, K. Zhong, S. Hou, Y. Bian, and R. Nandhakumar, Rapid and highly selective relay recognition of Cu(II) and sulfide ions by a simple benzimidazole-based fluorescent sensor in water, Sens. Actuators, B., 2013, 185, 188–194.

    Article  CAS  Google Scholar 

  18. J. J. Lee, Y. W. Choi, G. R. You, S. Y. Lee, and C. Kim, A phthalazine-based two-in-one chromogenic receptor for detecting Co2+ and Cu2+ in an aqueous environment, Dalton Trans., 2015, 44, 13305–13314.

    Article  CAS  PubMed  Google Scholar 

  19. H. J. Jang, T. G. Jo, and C. Kim, A single colorimetric sensor for multiple targets: the sequential detection of Co2+ and cyanide and the selective detection of Cu2+ in aqueous solution, RSC Adv., 2017, 7, 17650–17659.

    Article  CAS  Google Scholar 

  20. G. K. Patra, R. Chandra, A. Ghorai, and K. K. Shrivas, A highly selective benzildihydrazone based Schiff base chromogenic chemosensor for rapid detection of Cu2+ in aqueous solution, Inorg. Chim. Acta., 2017, 462, 315–322.

    Article  CAS  Google Scholar 

  21. G. Dhaka, N. Kaur, and J. Singh, Spectral studies on benzimidazole-based “bare-eye” probe for the detection of Ni2+: Application as a solid state sensor, Inorg. Chim. Acta., 2017, 464, 18–22.

    Article  CAS  Google Scholar 

  22. A. K. Mahapatra, G. Hazra, N. K. Das, and S. Goswami, A highly selective triphenylamine-based indolylmethane derivatives as colorimetric and turn-off fluorimetric sensor toward Cu2+ detection by deprotonation of secondary amines, Sens. Actuators, B., 2011, 156, 456–462.

    Article  CAS  Google Scholar 

  23. D. Maity, A. K. Manna, D. Karthigeyan, T. K. Kundu, S. K. Pati, and T. Govindaraju, Visible-Near-Infrared and Fluorescent Copper Sensors Based on Julolidine Conjugates: Selective Detection and Fluorescence Imaging in Living Cells, Chem.–Eur. J., 2011, 17, 11152–11161.

    Article  CAS  PubMed  Google Scholar 

  24. D. Maity, and T. Govindaraju, Highly Selective Colorimetric Chemosensor for Co2+, Inorg. Chem., 2011, 50, 11282–11284.

    Article  CAS  PubMed  Google Scholar 

  25. D. Maity, B. Sarkar, S. Maiti, and T. Govindaraju, A Highly Selective Reaction-Based Two-Photon Probe for Copper(I) in Aqueous Media, ChemPlusChem., 2013, 78, 785–788.

    Article  CAS  PubMed  Google Scholar 

  26. D. Maity, A. Raj, D. Karthigeyan, T. K. Kundu, and T. Govindaraju, A switch-on near-infrared fluorescence-ready probe for Cu(I): live cell imaging, Supramol. Chem., 2015, 27, 589–594.

    Article  CAS  Google Scholar 

  27. D. Maity, V. Kumar, and T. Govindaraju, Reactive Probes for Ratiometric Detection of Co2+ and Cu+ Based on ESIPT Mechanism, Org. Lett., 2012, 14, 6008–6011.

    Article  CAS  PubMed  Google Scholar 

  28. X. Cao, W. Lin, and L. He, A Near-Infrared Fluorescence Turn-On Sensor for Sulfide Anions, Org. Lett., 2011, 13, 4716–4719.

    Article  CAS  PubMed  Google Scholar 

  29. L. Tang, X. Dai, X. Wen, D. Wu, and Q. Zhang, A rhodamine-benzothiazole conjugated sensor for colorimetric, ratiometric and sequential recognition of copper(II) and sulfide in aqueous media, Spectrochim. Acta, Part A., 2015, 139, 329–334.

    Article  CAS  Google Scholar 

  30. L. Tang, P. Zhou, Q. Zhang, Z. Huang, J. Zhao, and M. Cai, A simple quinoline derivatized thiosemicarbazone as a colorimetic and fluorescent sensor for relay recognition of Cu2+ and sulfide in aqueous solution, Inorg. Chem. Commun., 2013, 36, 100–104.

    Article  CAS  Google Scholar 

  31. S. Y. Lee, and C. Kim, A colorimetric chemosensor for sulfide in a near-perfect aqueous solution: practical application using a test kit, RSC Adv., 2016, 6, 85091–85099.

    Article  CAS  Google Scholar 

  32. J. Chen, and K. C. Teo, Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction, Anal. Chim. Acta., 2001, 450, 215–222.

    Article  CAS  Google Scholar 

  33. A.-C. Liu, D. Chen, C.-C. Lin, H.-H. Chou, and C. Chen, Application of Cysteine Monolayers for Electrochemical Determination of Sub-ppb Copper(II), Anal. Chem., 1999, 71, 1549–1552.

    Article  CAS  Google Scholar 

  34. Y. Zheng, Q. Huo, P. Kele, F. M. Andreopoulos, S. M. Pham, and R. M. Leblanc, A new fluorescent chemosensor for copper ions based on tripeptide glycyl-histidyl-lysine (GHK), Org. Lett., 2001, 3, 3277–3280.

    Article  CAS  PubMed  Google Scholar 

  35. G. R. You, G. J. Park, J. J. Lee, and C. Kim, A colorimetric sensor for the sequential detection of Cu2+ and CN− in fully aqueous media: practical performance of Cu2+, Dalton Trans., 2015, 44, 9120–9129.

    Article  CAS  PubMed  Google Scholar 

  36. L. Jiao, J. Li, S. Zhang, C. Wei, E. Hao, M. G. H. Vicente, H. Zheng, Z. Zuo, C. Ouyang, H. Liu, Y. Li, and D. J. Zhu, A selective fluorescent sensor for imaging Cu2+ in living cells, New J. Chem., 2009, 33, 1888–1893.

    Article  CAS  Google Scholar 

  37. X. Zhou, G. Li, P. Yang, L. Zhao, T. Deng, H. Shen, Z. Yang, Z. Tian, and Y. Chen, A switching sensor of C-H bond breakage/formation regulated by mediating copper(II)’s complexation, Sens. Actuators, B., 2017, 242, 56–62.

    Article  CAS  Google Scholar 

  38. A. Perry, and D. Miles, An off-the-shelf sensor for colourimetric detection of sulfide, Tetrahedron Lett., 2016, 57, 5788–5793.

    Article  CAS  Google Scholar 

  39. H. Tavallali, G. Deilamy-Rad, A. Moaddeli, and K. Asghari, A new pincer-type “naked-eye” colorimetric probe for Cu2+ determination in 80% water media and its application as a solid state sensor and an efficient antibacterial product, Sens. Actuators, B, 2017, 1121–1128.

    Google Scholar 

  40. I. J. Chang, M. G. Choi, Y. A. Jeong, S. H. Lee, and S.-K. Chang, Colorimetric determination of Cu2+ in simulated wastewater using naphthalimide-based Schiff base, Tetrahedron Lett., 2017, 58, 474–477.

    Article  CAS  Google Scholar 

  41. G. Yu, Y. Cao, H. Liu, Q. Wu, Q. Hu, B. Jiang, and Z. Yuan, A spirobenzopyran-based multifunctional chemosensor for the chromogenic sensing of Cu2+ and fluorescent sensing of hydrazine with practical applications, Sens. Actuators, B., 2017, 245, 803–814.

    Article  CAS  Google Scholar 

  42. P. X. Pei, J. H. Hu, Y. Chen, Y. Sun, and J. Qi, A novel dual-channel chemosensor for CN− using asymmetric double-azine derivatives in aqueous media and its application in bitter almond, Spectrochim. Acta, Part A., 2017, 181, 131–136.

    Article  CAS  Google Scholar 

  43. Z. Yan, Q. Zhao, M. Wen, L. Hu, X. Zhang, and J. You, A novel polydentate ligand chromophore for simultaneously colorimetric detection of trace Ag+ and Fe3+, Spectrochim. Acta, Part A., 2017, 186, 17–22.

    Article  CAS  Google Scholar 

  44. D. Maity, and T. Govindaraju, A turn-on NIR fluorescence and colourimetric cyanine probe for monitoring the thiol content in serum and the glutathione reductase assisted glutathione redox process, Org. Biomol. Chem., 2013, 11, 2098–2104.

    Article  CAS  PubMed  Google Scholar 

  45. D. Maity, A. Raj, P. K. Samanta, D. Karthigeyan, T. K. Kundu, S. K. Pati, and T. Govindaraju, A probe for ratiometric near-infrared fluorescence and colorimetric hydrogen sulfide detection and imaging in live cells, RSC Adv., 2014, 4, 11147–11151.

    Article  CAS  Google Scholar 

  46. X. Qi, E. J. Jun, L. Xu, S.-J. Kim, J. S. J. Hong, Y. J. Yoon, and J. Yoon, New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+, J. Org. Chem., 2006, 71, 2881–2884.

    Article  CAS  PubMed  Google Scholar 

  47. K. B. Kim, H. Kim, E. J. Song, S. Kim, I. Noh, and C. Kim, A cap-type Schiff base acting as a fluorescence sensor for zinc(II) and a colorimetric sensor for iron(II), copper(II), and zinc(II) in aqueous media, Dalton Trans., 2013, 42, 16569–16577.

    Article  CAS  PubMed  Google Scholar 

  48. C.-F. Lin, W.-S. Huang, H.-H. Chou, and J. T. Lin, Synthesis and characterization of cyclometalated iridium(III) complexes containing pyrimidine-based ligands, J. Organomet. Chem., 2009, 694, 2757–2769.

    Article  CAS  Google Scholar 

  49. C. H. Min, S. Na, J. E. Shin, J. K. Kim, T. G. Jo, and C. Kim, A new Schiff-based chemosensor for chromogenic sensing of Cu2+, Co2+ and S2− in aqueous solution: experimental and theoretical studies, New J. Chem., 2017, 41, 3991–3999.

    Article  CAS  Google Scholar 

  50. N. Roy, S. Nath, A. Dutta, P. Mondal, P. C. Paul, and T. S. Singh, A highly efficient and selective coumarin based fluorescent probe for colorimetric detection of Fe3+ and fluorescence dual sensing of Zn2+ and Cu2+, RSC Adv., 2016, 6, 63837–63847.

    Article  CAS  Google Scholar 

  51. G. J. Park, J. J. Lee, G. R. You, L. Nguyen, I. Noh, and C. Kim, A dual chemosensor for Zn2+ and Co2+ in aqueous media and living cells: Experimental and theoretical studies, Sens. Actuators, B., 2016, 223, 509–519.

    Article  CAS  Google Scholar 

  52. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  53. C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter., 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  54. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, revision B.02, Gaussian, Inc., Wallingford CT, 2004.

    Google Scholar 

  55. P. C. Hariharan, and J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, Theor. Chim. Acta., 1973, 28, 213–222.

    Article  CAS  Google Scholar 

  56. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople, Self-Consistent Molecular Orbital Methods. 23. A polarization-type basis set for 2nd-row elements, J. Chem. Phys., 1982, 77, 3654–3665.

    Article  CAS  Google Scholar 

  57. P. J. Hay, and W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys., 1985, 82, 270.

    Article  CAS  Google Scholar 

  58. W. R. Wadt, and P. J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys., 1985, 82, 284–298.

    Article  CAS  Google Scholar 

  59. W. R. Wadt, and P. J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 1985, 82, 299–310.

    Article  Google Scholar 

  60. V. Barone, and M. Cossi, Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A., 1998, 102, 1995–2001.

    Article  CAS  Google Scholar 

  61. M. Cossi, and V. Barone, Time-dependent density functional theory for molecules in liquid solutions, J. Chem. Phys., 2001, 115, 4708.

    Article  CAS  Google Scholar 

  62. N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, cclib: a library for package-independent computational chemistry algorithms, J. Comput. Chem., 2008, 29, 839–845.

    Article  PubMed  CAS  Google Scholar 

  63. P. Job, Formation and Stability of Inorganic Complexes in Solution, Ann. Chim., 1928, 9, 113–203.

    CAS  Google Scholar 

  64. G. Grynkiewicz, M. Poenie, and R. Y. Tsien, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem., 1985, 260, 3440–3450.

    Article  CAS  PubMed  Google Scholar 

  65. L. Tang, J. Zhao, M. Cai, P. Zhou, K. Zhong, S. Hou, and Y. Bian, An efficient sensor for relay recognition of Zn2+ and Cu2+ through fluorescence “off–on–off” functionality, Tetrahedron Lett., 2013, 54, 6105–6109.

    Article  CAS  Google Scholar 

  66. S. Goswami, S. Maity, A. K. Das, and A. C. Maity, Single chemosensor for highly selective colorimetric and fluorometric dual sensing of Cu(II) as well as “NIRF” to acetate ion, Tetrahedron Lett., 2013, 54, 6631–6634.

    Article  CAS  Google Scholar 

  67. Y.-K. Tsui, S. Devaraj, and Y.-P. Yen, Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: A new selective chromogenic and fluorogenic sensor for cyanide ion, Sens. Actuators, B., 2012, 161, 510–519.

    Article  CAS  Google Scholar 

  68. B. Gordon, P. Callan, and C. Vickers, WHO guidelines for drinking-water quality, WHO Chron., 2008, 38, 564.

    Google Scholar 

  69. F. A. Abebe, C. S. Eribal, G. Ramakrishna, and E. Sinn, A “turn-on” fluorescent sensor for the selective detection of cobalt and nickel ions in aqueous media, Tetrahedron Lett., 2011, 52, 5554–5558.

    Article  CAS  Google Scholar 

  70. C.-Y. Tsai, and Y.-W. Lin, A highly selective and sensitive fluorescence assay for determination of copper(II) and cobalt(II) ions in environmental water and toner samples, Analyst., 2013, 138, 1232–1238.

    Article  CAS  PubMed  Google Scholar 

  71. J. M. Jung, S. Y. Lee, and C. Kim, A novel colorimetric chemosensor for multiple target metal ions Fe2+, Co2+, and Cu2+ in a near-perfect aqueous solution: Experimental and theoretical studies, Sens. Actuators, B., 2017, 251, 291–301.

    Article  CAS  Google Scholar 

  72. D. Mahendiran, R. S. Kumar, V. Viswanathan, D. Velmurugan, and A. K. Rahiman, Targeting of DNA molecules, BSA/c-Met tyrosine kinase receptors and anti-proliferative activity of bis(terpyridine)copper(II) complexes, Dalton Trans., 2016, 45, 7794–7814.

    Article  CAS  PubMed  Google Scholar 

  73. R. Sahu, and V. Manivannan, Syntheses and molecular structures of Co3+-Na+ and Co3+-K+ coordination polymers constructed using mono- and bis-chelated cobalt(III) complexes of bis(2-pyridylcarbonyl)amide ion, Inorg. Chim. Acta., 2010, 363, 4008–4016.

    Article  CAS  Google Scholar 

  74. G. J. Park, I. H. Hwang, E. J. Song, H. Kim, and C. Kim, A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide, Tetrahedron., 2014, 70, 2822–2828.

    Article  CAS  Google Scholar 

  75. J. H. Kang, S. Y. Lee, H. M. Ahn, and C. Kim, Sequential detection of copper(II) and cyanide by a simple colorimetric chemosensor, Inorg. Chem. Commun., 2016, 74, 62–65.

    Article  CAS  Google Scholar 

  76. As we proved with several mechanistic studies, the Co2+-2·1 complex is oxidized to the Co3+-2·1 complex in air. Co3+ would bind more strongly to sensor 1 than Co2+ or Cu2+. Therefore, it might be difficult for S2− to bind to Co3+. Based on this assumption, the cobalt complex of 1 is unable to detect S2−

  77. H. A. Benesi, and J. H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc., 1949, 71, 2703–2707.

    Article  CAS  Google Scholar 

  78. World Health Organization, pH in Drinking-water Background document for development of, pH Drink., 1996, 2, 7.

    Google Scholar 

Download references

Acknowledgments

Financial support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1A2A2A09001301) is gratefully acknowledged. This work was also supported by Korea Environment Industry & Technology Institute (KEITI) through “The Chemical Accident Prevention Technology Development Project”, funded by Korea Ministry of Environment (MOE) (no. 2016001970001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheal Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.S., Lee, S.Y., Jung, J.M. et al. A new Schiff-base chemosensor for selective detection of Cu2+ and Co2+ and its copper complex for colorimetric sensing of S2− in aqueous solution. Photochem Photobiol Sci 16, 1677–1689 (2017). https://doi.org/10.1039/c7pp00229g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00229g

Navigation