Skip to main content

Advertisement

Log in

Visible light assisted hydrogen generation from complete decomposition of hydrous hydrazine using rhodium modified TiO2 photocatalysts

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Hydrogen is considered to be an ideal energy carrier, which produces only water when combined with oxygen and thus has no detrimental effect on the environment. While the catalytic decomposition of hydrous hydrazine for the production of hydrogen is well explored, little is known about its photocatalytic decomposition. The present paper describes a highly efficient photochemical methodology for the production of hydrogen through the decomposition of aqueous hydrazine using titanium dioxide nanoparticles modified with a Rh(i) coordinated catechol phosphane ligand (TiO2–Rh) as a photocatalyst under visible light irradiation. After 12 h of visible light irradiation, the hydrogen yield was 413 μmol g−1 cat with a hydrogen evolution rate of 34.4 μmol g−1 cat h−1. Unmodified TiO2 nanoparticles offered a hydrogen yield of 83 μmol g−1 cat and a hydrogen evolution rate of only 6.9 μmol g−1 cat h−1. The developed photocatalyst was robust under the experimental conditions and could be efficiently reused for five subsequent runs without any significant change in its activity. The higher stability of the photocatalyst is attributed to the covalent attachment of the Rh complex, whereas the higher activity is believed to be due to the synergistic mechanism that resulted in better electron transfer from the Rh complex to the conduction band of TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes and references

  1. M. Felderhoff, C. Weidenthaler, R. V. Helmolt and U. Eberle, Phys. Chem. Chem. Phys., 2007, 9, 2643–2653.

    Article  CAS  PubMed  Google Scholar 

  2. A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, S. Mekhilef, Renewable Sustainable Energy Rev., 2012, 16, 2070–2093.

    Article  Google Scholar 

  3. M. Zahmakiran and S. Ozkar, Appl. Catal., B, 2009, 89, 104–110.

    Article  CAS  Google Scholar 

  4. Y. Yamada, K. Yano, Q. Xu and S. Fukuzumi, J. Phys. Chem. C, 2010, 114, 16456–16462.

    Article  CAS  Google Scholar 

  5. S. Karahan, Zahmakıran and S. Ozkar, Int. J. Hydrogen Energy, 2011, 36, 4958–4966.

    Article  CAS  Google Scholar 

  6. S. Orimo, Y. Nakamori, J. R. Eliseo, A. Zuttel and C. M. Jensen, Chem. Rev., 2007, 107, 4111–4132.

    Article  CAS  PubMed  Google Scholar 

  7. L. Schlapbach and A. Zuttel, Nature, 2001, 414, 353–358.

    Article  CAS  PubMed  Google Scholar 

  8. A. W. C. van den Berg and C. O. Aren, Chem. Commun., 2008, 668–681.

    Google Scholar 

  9. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O′Keeffe and O. M. Yaghi, Science, 2003, 300, 1127–1129.

    Article  CAS  PubMed  Google Scholar 

  10. H.-L. Jiang, S. K. Singh, J.-M. Yan, X.-B. Zhang and Q. Xu, ChemSusChem, 2010, 3, 541–549.

    Article  CAS  PubMed  Google Scholar 

  11. B. Zhao, J. Song, R. Ran and Z. Shao, Int. J. Hydrogen Energy, 2012, 37, 1133–1139.

    Article  CAS  Google Scholar 

  12. L. He, B. Liang, L. Li, X. Yang, Y. Huang, A. Wang, X. Wang and T. Zhang, ACS Catal., 2015, 5, 1623–1628.

    Article  CAS  Google Scholar 

  13. J. Wang, X.-B. Zhang, Z.-L. Wang, L.-M. Wang and Y. Zhang, Energy Environ. Sci., 2012, 5, 6885.

    Article  CAS  Google Scholar 

  14. S. K. Singh, Q. Xu, Chem. Commun., 2010, 46, 6545–6547.

    Article  CAS  Google Scholar 

  15. D. G. Tong, W. Chu, P. Wu, G. F. Gua and L. Zhang, J. Mater. Chem. A, 2013, 1, 358–366.

    Article  CAS  Google Scholar 

  16. X. Zong, C. Sun, H. Yu, Z. G. Chen, Z. Xing, D. Ye, G. Q. Lu, X. Li and L. Wang, J. Phys. Chem. C, 2013, 117, 4937–4942.

    Article  CAS  Google Scholar 

  17. S. Navalón, A. Dhakshinamoorthy, M. Álvaro and H. Garcia, ChemSusChem, 2013, 6, 562–577.

    Article  PubMed  CAS  Google Scholar 

  18. K. A. S. Fernando, S. Sahu, Y. Liu, W. K. Lewis, E. A. Guliants, A. Jafariyan, P. Wang, C. E. Bunker and Y.-P. Sun, ACS Appl. Mater. Interfaces, 2015, 7, 8363–8376.

    Article  CAS  PubMed  Google Scholar 

  19. R. Marschalla, L. Wang, Catal. Today, 2014, 225, 111–135.

    Article  CAS  Google Scholar 

  20. Y. Lia, W. N. Wang, Z. Zhan, M. H. Woo, C. Y. Wu and P. Biswas, Appl. Catal., B, 2010, 100, 386–392.

    Article  CAS  Google Scholar 

  21. I. H. Tseng, W. C. Chang and J. C. S. Wu, Appl. Catal., B, 2002, 37, 37–48.

    Article  CAS  Google Scholar 

  22. Q. Zhang, Y. Li, E. A. Ackerman, M. G. Josifovska and H. Li, Appl. Catal., A, 2011, 400, 195–202.

    Article  CAS  Google Scholar 

  23. Z. Zhang, Z. Wang, S.-W. Cao and C. Xue, J. Phys. Chem. C, 2013, 117, 25939–25947.

    Article  CAS  Google Scholar 

  24. S. G. Kumar and L. G. Devi, J. Phys. Chem. A, 2011, 115, 13211–13241.

    Article  CAS  PubMed  Google Scholar 

  25. S. M. Arachchige, J. Brown and K. J. Brewer, J. Photochem. Photobiol., A, 2008, 197, 13–17.

    Article  CAS  Google Scholar 

  26. K. Takanabe, K. Kamata, X. Wang, M. Antonietti, J. Kubota and K. Domen, Phys. Chem. Chem. Phys., 2010, 12, 13020–13025.

    Article  CAS  PubMed  Google Scholar 

  27. X. Zhang, U. Veikko, J. Mao, P. Cai and T. Peng, Chem.–Eur. J., 2012, 18, 12103–12118.

    Article  CAS  PubMed  Google Scholar 

  28. J. Zhang, P. Du, J. Schneider, P. Jarosz and R. Eisenberg, J. Am. Chem. Soc., 2007, 129, 7726–7727.

    Article  CAS  PubMed  Google Scholar 

  29. H. Maaoui, P. Kumar, A. Kumar, G.-H. Pan, R. Chtourou, S. Szunerits, R. Boukherroub and S. L. Jain, Photochem. Photobiol. Sci., 2016, 15, 1282–1288.

    Article  CAS  PubMed  Google Scholar 

  30. P. Kumar, C. Joshi, N. Labhsetwar, R. Boukherroub and S. L. Jain, Nanoscale, 2015, 7, 15258–15267.

    Article  CAS  PubMed  Google Scholar 

  31. P. Kumar, H. P. Mungse, S. Cordier, R. Boukherroub, O. P. Khatri and S. L. Jain, Carbon, 2015, 94, 91–100.

    Article  CAS  Google Scholar 

  32. C. Xu, K. Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, et al., J. Am. Chem. Soc., 2004, 126, 9938–9939.

    Article  CAS  PubMed  Google Scholar 

  33. Q. Ye, F. Zhou and W. Liu, Chem. Soc. Rev., 2011, 40, 4244–4258.

    Article  CAS  PubMed  Google Scholar 

  34. C. C. Gheorghiu, B. F. Machado, C. Salinas-Martinez de Lecea, M. Gouygou, M. C. Roman-Martinez and P. Serp, Dalton Trans., 2014, 43, 7455–7463.

    Article  CAS  PubMed  Google Scholar 

  35. C. C. Gheorghiu, B. F. Machado, C. Salinas-Martinez de Lecea, M. Gouygou, M. C. Roman-Martinez and P. Serp, Dalton Trans., 2014, 43, 7455–7463.

    Article  CAS  PubMed  Google Scholar 

  36. D. W. Thompson, A. Ito and T. J. Meyer, Pure Appl. Chem., 2013, 85, 1257–1305.

    Article  CAS  Google Scholar 

  37. S. K. Singh, X.-B. Zhang and Q. Xu, J. Am. Chem. Soc., 2009, 131, 9894–9895.

    Article  CAS  PubMed  Google Scholar 

  38. Y. Liang, S. Lin, L. Liu, J. Hu and W. Cui, Appl. Catal., B, 2015, 164, 192–203.

    Article  CAS  Google Scholar 

  39. S. Lin, L. Liu, J. Hu, Y. Liang and W. Cui, Appl. Surf. Sci., 2015, 324, 20–29.

    Article  CAS  Google Scholar 

  40. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro and V. D. Santo, J. Am. Chem. Soc., 2012, 134, 7600–7603.

    Article  CAS  PubMed  Google Scholar 

  41. S. N. Habisreutinger, L. S. Mende and J. K. Stolarczyk, Angew. Chem., Int. Ed., 2013, 52, 7372–7408.

    Article  CAS  Google Scholar 

  42. J. Yu and J. Ran, Energy Environ. Sci., 2011, 4, 1364–1371.

    Article  CAS  Google Scholar 

  43. Z. Pei, L. Ding, H. Lin, S. Weng, Z. Zheng, Y. Hou and P. Liu, J. Mater. Chem. A, 2013, 1, 10099–10102.

    Article  CAS  Google Scholar 

  44. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang and Y. Dai, ACS Appl. Mater. Interfaces, 2012, 4, 4024–4030.

    Article  CAS  PubMed  Google Scholar 

  45. M. M. Khan, S. A. Ansari, D. Pradhan, M. O. Ansari, D. H. Han, J. Lee and M. H. Cho, J. Mater. Chem. A, 2014, 2, 637–644.

    Article  CAS  Google Scholar 

  46. N. Serpone, J. Phys. Chem. B, 2006, 110, 24287–24293.

    Article  CAS  PubMed  Google Scholar 

  47. P. Kumar, N. G. Naumov, R. Boukherroub and S. L. Jain, Appl. Catal., A, 2015, 499, 32–38.

    Article  CAS  Google Scholar 

  48. S. Chikkali and D. Gudat, Eur. J. Inorg. Chem., 2006, 3005–3009.

    Google Scholar 

  49. B. M. Fung, A. K. Khitrin and K. Ermolaev, J. Magn. Reson., 2000, 142, 97–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suman L. Jain or Sabine Szunerits.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6pp00432f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Kumar, A., Queffélec, C. et al. Visible light assisted hydrogen generation from complete decomposition of hydrous hydrazine using rhodium modified TiO2 photocatalysts. Photochem Photobiol Sci 16, 1036–1042 (2017). https://doi.org/10.1039/c6pp00432f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00432f

Navigation