Skip to main content

Advertisement

Log in

Temperature-boosted photocatalytic H2 production and charge transfer kinetics on TiO2 under UV and visible light

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This study investigates the effect of reaction temperature (298-353 K) on photocatalytic H2 production in bare and platinized TiO2 (Pt/TiO2) suspensions containing various organic hole scavengers (EDTA, methanol, and formic acid) under UV (λ > 320 nm) and visible light (λ > 420 nm for ligand-to-metal charge transfer). H2 production rates are enhanced ~7.8- and ~2.5-fold in TiO2 and Pt/TiO2 suspensions, respectively, with EDTA under UV by simply elevating the reaction temperature from 298 K to 323 K (ΔT = 25 °C). Such a temperature-boosted increase in H2 production is always observed, regardless of the TiO2 crystalline structure (anatase, rutile, and an anatase/rutile mixture), type of hole scavenger, and irradiation wavelength range. It is estimated that approximately 90% of incident photons are utilized in H2 production, for which the activation energy is 25.5 kJ mol−1. Detailed photoelectrochemical analyses show the positive relationship between reaction temperature and photocurrent generation, with charge carrier mobility and interfacial charge transfer improving at higher temperatures. Other possible factors, such as H2 solubility and mass transport, play a limited role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semiconductor Electrodes, ed. H. O. Finklea, Elsevier, Amsterdam, 1988.

    Google Scholar 

  2. N. Serpone and E. Pelizzetti, Photocatalysis: Fundamentals and Applications, Wiley, New York, 1989.

    Google Scholar 

  3. R. Van de Krol and M. Gratzel, Photoelectrochemical Hydrogen Production, Springer, New York, 2012.

    Book  Google Scholar 

  4. On Solar Hydrogen & Nanotechnology, ed. L. Vayssieres, Wiley, Singapore, 2009.

    Google Scholar 

  5. K. Maeda and K. Domen, Photocatalytic Water Splitting: Recent Progress and Future Challenges, J. Phys. Chem. Lett., 2010, 1, 2655–2661.

    Article  CAS  Google Scholar 

  6. J. S. Jang and H. Park, in Materials and Processes for Solar Fuel Production, ed. R. Subramanian, B. Viswanathan and J. S. Lee, Springer, 2014.

  7. D. Lu, T. Takata, N. Saito, Y. Inoue and K. Domen, Photocatalyst releasing hydrogen from water, Nature, 2006, 440, 295.

    Article  Google Scholar 

  8. H. Kato, M. Hori, R. Konta, Y. Shimodaira and A. Kudo, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation, Chem. Lett., 2004, 33, 1348–1349.

    Article  CAS  Google Scholar 

  9. T. H. Jeon, W. Choi and H. Park, Cobalt-phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes, Phys. Chem. Chem. Phys., 2011, 13, 21392–21401.

    Article  CAS  Google Scholar 

  10. S. K. Choi, W. Choi and H. Park, Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes, Phys. Chem. Chem. Phys., 2013, 15, 6499–6507.

    Article  CAS  Google Scholar 

  11. H. W. Jeong, T. H. Jeon, J. S. Jang, W. Choi and H. Park, Strategic modification of BiVO4 for improving photoelectrochemical water oxidation performance, J. Phys. Chem. C, 2013, 117, 9104–9112.

    Article  CAS  Google Scholar 

  12. H. W. Jeong, S.-W. Chae, B. Song, C.-H. Cho, S.-H. Baek, Y. Park and H. Park, Optical resonance and charge transfer behavior on patterned WO3 microdisc arrays, Energy Environ. Sci., 2016 DOI: 10.1039/C1036EE01003B.

    Google Scholar 

  13. H. Park, H.-H. Ou, U. Kang, J. Choi and M. R. Hoffmann, Photocatalytic conversion of carbon dioxide to methane on TiO2/CdS in aqueous isopropanol solution, Catal. Today, 2016, 266, 153–159.

    Article  CAS  Google Scholar 

  14. H. Park, W. Choi and M. R. Hoffmann, Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production, J. Mater. Chem., 2008, 18, 2379–2385.

    Article  CAS  Google Scholar 

  15. A. Mills and R. Davies, Activation energies in semiconductor photocatalysis for water purification: the 4-chlorophenol-TiO2-O2 photosystem, J. Photochem. Photobiol., A, 1995, 85, 173–178.

    Article  CAS  Google Scholar 

  16. J.-F. Wu, C.-H. Hung, C.-S. Yuan, Kinetic modeling of promotion and inhibition of temperature on photocatalytic degradation of benzene vapor, J. Photochem. Photobiol., A, 2005, 170, 299–306.

    Article  CAS  Google Scholar 

  17. X. Fu, L. A. Clark, W. A. Zeltner and M. A. Anderson, Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene, J. Photochem. Photobiol., A, 1996, 97, 181–186.

    Article  CAS  Google Scholar 

  18. F. Saladin and I. Alxneit, Temperature dependence of the photochemical reduction of CO2 in the presence of H2O at the solid/gas interface of TiO2, J. Chem. Soc., Faraday Trans., 1997, 93, 4159–4163.

    Article  CAS  Google Scholar 

  19. G. Kim and W. Choi, Charge-transfer surface complex of EDTA-TiO2 and its effect on photocatalysis under visible light, Appl. Catal., B, 2010, 100, 77–83.

    Article  CAS  Google Scholar 

  20. H. Park, in Engineered Nanoparticles and the Environment: Biophysicochemical Processes and Toxicity, ed. B. Xing, C. D. Vecitis and N. Senesi, Wiley, New York, 2016.

  21. H. Park, Y. Park, W. Kim and W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J. Photochem. Photobiol., C, 2013, 15, 1–20.

    Article  CAS  Google Scholar 

  22. H. Park, H.-i. Kim, G.-h. Moon and W. Choi, Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2, Energy Environ. Sci., 2016, 9, 411–433.

    Article  CAS  Google Scholar 

  23. J. Ryu and W. Choi, Substrate-specific photocatalytic activities of TiO2 and multiactivity test for water treatment application, Environ. Sci. Technol., 2008, 42, 294–300.

    Article  CAS  Google Scholar 

  24. H. Park and W. Choi, Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in UV-illuminated suspensions of TiO2 and Pt/TiO2, J. Phys. Chem. B, 2003, 107, 3885–3890.

    Article  CAS  Google Scholar 

  25. H. Park, A. Bak, T. H. Jeon, S. Kim and W. Choi, Photo-chargeable and dischargeable TiO2 and WO3 heterojunction electrodes, Appl. Catal., B, 2012, 115, 74–80.

    Article  Google Scholar 

  26. S. Kim and H. Park, Sunlight-harnessing and storing heterojunction TiO2/Al2O3/WO3 electrodes for night-time applications, RSC Adv., 2013, 3, 17551–17558.

    Article  CAS  Google Scholar 

  27. S. Kim, Y. Park, W. Kim and H. Park, Harnessing and storing visible light using a heterojunction of WO3 and CdS for sunlight-free catalysis, Photochem. Photobiol. Sci., 2016, 15, 1006–1011.

    Article  CAS  Google Scholar 

  28. H. Park, J. Lee and W. Choi, Study of special cases where the enhanced photocatalytic activities of Pt/TiO2 vanish under low light intensity, Catal. Today, 2006, 111, 259–265.

    Article  CAS  Google Scholar 

  29. W. Kim, T. Tachikawa, G. Moon, T. Majima and W. Choi, Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles, Angew. Chem., Int. Ed., 2014, 53, 14036–14041.

    Article  CAS  Google Scholar 

  30. A. F. Alkaim, T. A. Kandiel, F. H. Hussein, R. Dillert and D. W. Bahnemann, Enhancing the photocatalytic activity of TiO2 by pH control: A case study for the degradation of EDTA, Catal. Sci. Technol., 2013, 3, 3216–3222.

    Article  CAS  Google Scholar 

  31. L. M. Ahmed, F. H. Hussein and A. A. Mahdi, Photocatalytic dehydrogenation of aqueous methanol solution by naked and platinized TiO2 nanoparticles, Asian J. Chem., 2012, 24, 5564–5568.

    CAS  Google Scholar 

  32. Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, New York, 90th edn, 2009.

    Google Scholar 

  33. Y.-K. Hsu, Y.-C. Chen, Y.-G. Lin, L.-C. Chen, K.-H. Chen, Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light, J. Mater. Chem., 2012, 22, 2733–2739.

    Article  CAS  Google Scholar 

  34. D. K. Zhong and D. R. Gamelin, Photoelectrochemical water oxidation by cobalt catalyst/α-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck, J. Am. Chem. Soc., 2010, 132, 4202–4207.

    Article  CAS  Google Scholar 

  35. T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota and K. Domen, Aspects of the water splitting mechanism on (Ga1−xZnx)(N1−xOx) photocatalyst modified with Rh2−yCryO3 cocatalyst, J. Phys. Chem. C, 2009, 113, 21458–21466.

    Article  CAS  Google Scholar 

  36. S. A. Sherif, D. Y. Goswami, E. K. Stefanakos and A. Steinfeld, Handbook of Hydrogen Energy, CRC Press, New York, 2014.

    Book  Google Scholar 

  37. N. Kopidakis, K. D. Benkstein, J. van de Lagemaat and A. J. Frank, Temperature dependence of the electron diffusion coefficient in electrolyte-filled TiO2 nanoparticle films: Evidence against multiple trapping in exponential conduction-band tails, Phys. Rev. B: Condens. Matter, 2006, 73, 045326.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunwoong Park.

Additional information

Electronic supplementary information (ESI) available: Fig. S1-S4. See DOI: 10.1039/c6pp00263c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G., Choi, H.J., Kim, Hi. et al. Temperature-boosted photocatalytic H2 production and charge transfer kinetics on TiO2 under UV and visible light. Photochem Photobiol Sci 15, 1247–1253 (2016). https://doi.org/10.1039/c6pp00263c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00263c

Navigation