Issue 2, 2017

Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond

Abstract

Bright and photostable fluorescence from nitrogen-vacancy (NV) centers is demonstrated in unprocessed detonation nanodiamond particle aggregates. The optical properties of these particles is analyzed using confocal fluorescence microscopy and spectroscopy, time resolved fluorescence decay measurements, and optically detected magnetic resonance experiments. Two particle populations with distinct optical properties are identified and compared to high-pressure high-temperature (HPHT) fluorescent nanodiamonds. We find that the brightness of one detonation nanodiamond particle population is on the same order as that of highly processed fluorescent 100 nm HPHT nanodiamonds. Our results may open the path to a simple and up-scalable route for the production of fluorescent NV nanodiamonds for use in bioimaging applications.

Graphical abstract: Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond

Supplementary files

Article information

Article type
Communication
Submitted
05 Oct 2016
Accepted
03 Dec 2016
First published
05 Dec 2016

Nanoscale, 2017,9, 497-502

Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond

P. Reineck, M. Capelli, D. W. M. Lau, J. Jeske, M. R. Field, T. Ohshima, A. D. Greentree and B. C. Gibson, Nanoscale, 2017, 9, 497 DOI: 10.1039/C6NR07834F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements