Issue 47, 2015

Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells

Abstract

Efficient lead halide perovskite solar cells have been realized using SnO2 as electron selective layers (ESLs). Here, we report on the effects of the annealing temperature of solution-processed SnO2 ESLs on the performance of perovskite solar cells. We find that the cells using low-temperature annealed SnO2 (LT-SnO2) ESLs outperform the cells using high-temperature annealed SnO2 (HT-SnO2) ESLs, exhibiting higher open circuit voltages and fill factors. Structural, electrical, optical, and electrochemical characterizations reveal the origin of the performance differences: LT-SnO2 produces better film coverage, wider band gap, and lower electron density than that of HT-SnO2. The confluence of these properties results in more effective transportation of electrons and blocking of holes, leading to lower interface recombination. Therefore, LT-SnO2 ESLs are preferred for manufacturing perovskite solar cells on flexible substrates.

Graphical abstract: Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
20 Aug 2015
Accepted
02 Nov 2015
First published
04 Nov 2015

J. Mater. Chem. A, 2015,3, 24163-24168

Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells

W. Ke, D. Zhao, A. J. Cimaroli, C. R. Grice, P. Qin, Q. Liu, L. Xiong, Y. Yan and G. Fang, J. Mater. Chem. A, 2015, 3, 24163 DOI: 10.1039/C5TA06574G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements