Issue 43, 2015

Tailoring chiro-optical effects by helical nanowire arrangement

Abstract

In this work, we experimentally investigate the chiro-optical properties of 3D metallic helical systems at optical frequencies. Both single and triple-nanowire geometries have been studied. In particular, we found that in single-helical nanostructures, the enhancement of chiro-optical effects achievable by geometrical design is limited, especially with respect to the operation wavelength and the circular polarization conversion purity. Conversely, in the triple-helical nanowire configuration, the dominant interaction is the coupling among the intertwined coaxial helices which is driven by a symmetric spatial arrangement. Consequently, a general improvement in the g-factor, extinction ratio and signal-to-noise-ratio is achieved in a broad spectral range. Moreover, while in single-helical nanowires a mixed linear and circular birefringence results in an optical activity strongly dependent on the sample orientation and wavelength, in the triple-helical nanowire configuration, the obtained purely circular birefringence leads to a large optical activity up to 8°, independent of the sample angle, and extending in a broad band of 500 nm in the visible range. These results demonstrate a strong correlation between the configurational internal interactions and the chiral feature designation, which can be effectively exploited for nanoscale chiral device engineering.

Graphical abstract: Tailoring chiro-optical effects by helical nanowire arrangement

Supplementary files

Article information

Article type
Paper
Submitted
12 Jul 2015
Accepted
21 Sep 2015
First published
25 Sep 2015

Nanoscale, 2015,7, 18081-18088

Author version available

Tailoring chiro-optical effects by helical nanowire arrangement

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. De Giorgi and A. Passaseo, Nanoscale, 2015, 7, 18081 DOI: 10.1039/C5NR04674B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements