Issue 19, 2015

50 nm sized spherical TiO2 nanocrystals for highly efficient mesoscopic perovskite solar cells

Abstract

Single crystalline TiO2 nanoparticles (NPs) with spherical morphology are successfully synthesized by a hydrothermal reaction under basic conditions. TiO2 NPs, selectively controlled to the sizes of 30, 40, 50, and 65 nm, are then applied to a mesoporous photoelectrode of CH3NH3PbI3 perovskite solar cells. In particular, a spherical TiO2 NP of 50 nm size (NP50) offers the highest photovoltaic conversion efficiency (PCE) of 17.19%, with JSC of 21.58 mA cm−2, VOC of 1049 mV, and FF of 0.759 while the enhancement of PCE mainly arises from the increase of VOC and FF. Furthermore, the fabricated photovoltaic devices exhibit reproducible PCE values and very little hysteresis in their JV curves. Time-resolved photoluminescence measurement and pulsed light-induced transient measurement of the photocurrent indicate that the device employing NP50 exhibits the longest electron lifetime although the electron injection from perovskite to TiO2 is less efficient than the devices with smaller TiO2 NPs. The extended electron lifetime is attributed to the suppression of electron recombination due to optimized mesopores generated by the spherical NP50.

Graphical abstract: 50 nm sized spherical TiO2 nanocrystals for highly efficient mesoscopic perovskite solar cells

Article information

Article type
Paper
Submitted
02 Mar 2015
Accepted
11 Apr 2015
First published
14 Apr 2015

Nanoscale, 2015,7, 8898-8906

Author version available

50 nm sized spherical TiO2 nanocrystals for highly efficient mesoscopic perovskite solar cells

S. D. Sung, D. P. Ojha, J. S. You, J. Lee, J. Kim and W. I. Lee, Nanoscale, 2015, 7, 8898 DOI: 10.1039/C5NR01364J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements