Issue 39, 2015

The Soret absorption band of isolated chlorophyll a and b tagged with quaternary ammonium ions

Abstract

We have performed gas-phase absorption spectroscopy in the Soret-band region of chlorophyll (Chl) a and b tagged by quaternary ammonium ions together with time-dependent density functional theory (TD-DFT) calculations. This band is the strongest in the visible region of metalloporphyrins and an important reporter on the microenvironment. The cationic charge tags were tetramethylammonium, tetrabutylammonium, and acetylcholine, and the dominant dissociation channel in all cases was breakage of the complex to give neutral Chl and the charge tag as determined by photoinduced dissociation mass spectroscopy. Two photons were required to induce fragmentation on the time scale of the experiment (microseconds). Action spectra were recorded where the yield of the tag as a function of excitation wavelength was sampled. These spectra are taken to represent the corresponding absorption spectra. In the case of Chl a we find that the tag hardly influences the band maximum which for all three tags is at 403 ± 5 nm. A smaller band with maximum at 365 ± 10 nm was also measured for all three complexes. The spectral quality is worse in the case of Chl b due to lower ion beam currents; however, there is clear evidence for the absorption being to the red of that of Chl a (most intense peak at 409 ± 5 nm) and also a more split band. Our results demonstrate that the change in the Soret-band spectrum when one peripheral substituent (CH3) is replaced by another (CHO) is an intrinsic effect. First principles TD-DFT calculations agree with our experiments, supporting the intrinsic nature of the difference between Chl a and b and also displaying minimal spectral changes when different charge tags are employed. The deviations between theory and experiment have allowed us to estimate that the Soret-band absorption maxima in vacuo for the neutral Chl a and Chl b should occur at 405 nm and 413 nm, respectively. Importantly, the Soret bands of the isolated species are significantly blueshifted compared to those of solvated Chl and Chl–proteins. The protein microenvironment is certainly not innocent of perturbing the electronic structure of Chls.

Graphical abstract: The Soret absorption band of isolated chlorophyll a and b tagged with quaternary ammonium ions

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2015
Accepted
09 Apr 2015
First published
09 Apr 2015

Phys. Chem. Chem. Phys., 2015,17, 25793-25798

Author version available

The Soret absorption band of isolated chlorophyll a and b tagged with quaternary ammonium ions

M. H. Stockett, L. Musbat, C. Kjær, J. Houmøller, Y. Toker, A. Rubio, B. F. Milne and S. Brøndsted Nielsen, Phys. Chem. Chem. Phys., 2015, 17, 25793 DOI: 10.1039/C5CP01513H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements