Skip to main content
Log in

Texaphyrin sensitized near-IR-to-visible photon upconversion

Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Near-IR (NIR) absorption from a Cd(ii) texaphyrin (TXP) has been successfully coupled with rubrene triplet acceptors/annihilators in vacuum degassed dichloromethane to upconvert NIR (670–800 nm) incident photons into yellow fluorescence through sensitized triplet–triplet annihilation. Stern–Volmer analysis of dynamic energy transfer quenching of TXP by rubrene using transient absorption spectroscopy revealed Stern–Volmer and bimolecular quenching constants of 21?000 M−1 and 5.7 × 108 M−1 s−1 respectively, for the triplet–triplet energy transfer process. The upconverted emission intensity with respect to the incident excitation power density at 750 nm was shown to vary between quadratic and linear, illustrating the expected kinetic limits for the light producing photochemistry under continuous wave illumination. Furthermore, with increasing TXP sensitizer concentration, the characteristic quadratic-to-linear crossover point shifted to lower incident photon power density. This is consistent with the notion that stronger photon capture in the sensitizer leads to experimental conditions promoting upconversion under milder excitation conditions. The maximum quantum yield of the TXP-sensitized rubrene upconverted fluorescence was 1.54 ± 0.04% under dilute conditions determined relative to [Os(phen)3](PF6)2 under continuous wave excitation conditions. This saturating quantum efficiency was realized when the incident light power dependence reached the quadratic-to-linear crossover point and was constant over the region where the composition displayed linear response to incident light power density. In pulsed laser experiments at higher sensitizer concentrations, the triplet–triplet annihilation quantum yield was determined to saturate at approximately 13%, corresponding to an upconversion yield of ∼10%, suggesting that the dichloromethane solvent either lowers the T2 state of the rubrene acceptor or is somehow attenuating the annihilation reaction between excited rubrene triplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes and references

  1. T. N. Singh-Rachford and F. N. Castellano, Photon upconversion based on sensitized triplet-triplet annihilation. Coord. Chem. Rev., 2010, 254, 2560–2573.

    Article  CAS  Google Scholar 

  2. A. C. Atre and J. A. Dionne, Realistic upconverter-enhanced solar cells with non-ideal absorption and recombination efficiencies. J. Appl. Phys., 2011, 110, 034505–034509.

    Article  CAS  Google Scholar 

  3. J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark and R. E. I. Schropp, Upconverter solar cells: materials and applications. Energy Environ. Sci., 2011, 4, 4835–4848.

    Article  CAS  Google Scholar 

  4. A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione and F. Meinardi, Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. Phys. Chem. Chem. Phys., 2012, 14, 4322–4332.

    Article  CAS  Google Scholar 

  5. C. A. Parker and C. G. Hatchard, Sensitised anti-Stokes delayed fluorescence. Proc. Chem. Soc., London, 1962, 386–387.

    Google Scholar 

  6. P. E. Keivanidis, S. Baluschev, T. Miteva, G. Nelles, U. Scherf, A. Yasuda and G. Wegner, Up-conversion photoluminescence in polyfluorene doped with metal(II)-octaethyl porphyrins. Adv. Mater., 2003, 15, 2095–2098.

    Article  CAS  Google Scholar 

  7. D. V. Kozlov and F. N. Castellano, Anti-Stokes delayed fluorescence from metal-organic bichromophores. Chem. Commun., 2004, 2860–2861.

    Google Scholar 

  8. R. R. Islangulov, D. V. Kozlov and F. N. Castellano, Low power upconversion using MLCT sensitizers. Chem. Commun., 2005, 3776–3778.

    Google Scholar 

  9. S. Ji, W. Wu, W. Wu, H. Guo and J. Zhao, Ruthenium(II) polyimine complexes with a long-lived 3IL excited state or a 3MLCT/3IL equilibrium: efficient triplet sensitizers for low-power upconversion. Angew. Chem., Int. Ed., 2011, 50, 1626–1629.

    Article  CAS  Google Scholar 

  10. S. K. Sugunan, U. Tripathy, S. M. K. Brunet, M. F. Paige and R. P. Steer, Mechanisms of Low-Power Noncoherent Photon Upconversion in Metalloporphyrin-Organic Blue Emitter Systems in Solution. J. Phys. Chem. A, 2009, 113, 8548–8556.

    Article  CAS  Google Scholar 

  11. A. Monguzzi, R. Tubino and F. Meinardi, Multicomponent Polymeric Film for Red to Green Low Power Sensitized Up-Conversion. J. Phys. Chem. A, 2009, 113, 1171–1174.

    Article  CAS  Google Scholar 

  12. Y. Y. Cheng, B. Fueckel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley and T. W. Schmidt, Kinetic Analysis of Photochemical Upconversion by Triplet-Triplet Annihilation: Beyond Any Spin Statistical Limit. J. Phys. Chem. Lett., 2010, 1, 1795–1799.

    Article  CAS  Google Scholar 

  13. R. S. Khnayzer, J. Blumhoff, J. A. Harrington, A. Haefele, F. Deng and F. N. Castellano, Upconversion-Powered Photoelectrochemistry. Chem. Commun., 2012, 48, 209–211.

    Article  CAS  Google Scholar 

  14. Y. Y. Cheng, B. Fuckel, R. W. MacQueen, T. Khoury, R. G. C. R. Clady, T. F. Schulze, N. J. Ekins-Daukes, M. J. Crossley, B. Stannowski, K. Lips and T. W. Schmidt, Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energy Environ. Sci., 2012, 5, 6953–6959.

    Article  CAS  Google Scholar 

  15. T. F. Schulze, J. Czolk, Y.-Y. Cheng, B. Fuckel, R. W. MacQueen, T. Khoury, M. J. Crossley, B. Stannowski, K. Lips, U. Lemmer, A. Colsmann and T. W. Schmidt, Efficiency enhancement of organic and thin-film silicon solar cells with photochemical upconversion. J. Phys. Chem. C, 2012, 116, 22794–22801.

    Article  CAS  Google Scholar 

  16. J.-H. Kim, J.-H. Kim, Encapsulated Triplet–Triplet Annihilation-Based Upconversion in the Aqueous Phase for Sub-Band-Gap Semiconductor Photocatalysis. J. Am. Chem. Soc., 2012, 134, 17478–17481.

    Article  CAS  Google Scholar 

  17. A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino and F. Meinardi, Upconversion-Induced Fluorescence in Multicomponent Systems: Steady-state Excitation Power Threshold.. Phys. Rev. B: Condens. Matter, 2008, 78, 195112(195111)–195112(195115).

    Article  CAS  Google Scholar 

  18. Y. Y. Cheng, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley and T. W. Schmidt, On the efficiency limit of triplet-triplet annihilation for photochemical upconversion. Phys. Chem. Chem. Phys., 2010, 12, 66–71.

    Article  CAS  Google Scholar 

  19. T. N. Singh-Rachford, A. Haefele, R. Ziessel and F. N. Castellano, Boron Dipyrromethene Chromophores: Next Generation Triplet Acceptors/Annihilators for Low Power Upconversion Schemes. J. Am. Chem. Soc., 2008, 130, 16164–16165.

    Article  CAS  Google Scholar 

  20. A. Haefele, J. Blumhoff, R. S. Khnayzer and F. N. Castellano, Getting to the (Square) Root of the Problem: How to Make Noncoherent Pumped Upconversion Linear. J. Phys. Chem. Lett., 2012, 3, 299–303.

    Article  CAS  Google Scholar 

  21. T. N. Singh-Rachford and F. N. Castellano, Triplet Sensitized Red-to-Blue Photon Upconversion. J. Phys. Chem. Lett., 2010, 1, 195–200.

    Article  CAS  Google Scholar 

  22. F. Deng, J. R. Sommer, M. Myahkostupov, K. S. Schanze and F. N. Castellano, Near-IR phosphorescent metalloporphyrin as a photochemical upconversion sensitizer. Chem. Commun., 2013, 49, 7406–7408.

    Article  CAS  Google Scholar 

  23. F. Deng, J. Blumhoff and F. N. Castellano, Annihilation Limit of a Visible-to-UV Photon Upconversion Composition Ascertained from Transient Absorption Kinetics. J. Phys. Chem. A, 2013, 117, 4412–4419.

    Article  CAS  Google Scholar 

  24. J.-H. Kim, F. Deng, F. N. Castellano, J.-H. Kim, High Efficiency Low-Power Upconverting Soft Materials. Chem. Mater., 2012, 24, 2250–2252.

    Article  CAS  Google Scholar 

  25. C. E. McCusker and F. N. Castellano, Orange-to-blue and red-to-green photon upconversion with a broadband absorbing copper(I) MLCT sensitizer. Chem. Commun., 2013, 49, 3537–3539.

    Article  CAS  Google Scholar 

  26. T. N. Singh-Rachford, A. Nayak, M. L. Muro-Small, S. Goeb, M. J. Therien and F. N. Castellano, Supermolecular-Chromophore-Sensitized Near-Infrared-to-Visible Photon Upconversion. J. Am. Chem. Soc., 2010, 132, 14203–14211.

    Article  CAS  Google Scholar 

  27. T. N. Singh-Rachford and F. N. Castellano, Pd(II) Phthalocyanine-Sensitized Triplet-Triplet Annihilation from Rubrene. J. Phys. Chem. A, 2008, 112, 3550–3556.

    Article  CAS  Google Scholar 

  28. W. Sun and D. Wang, Excited-state properties of pentaazadentate expanded porphyrins. Sci. China, Ser. B: Chem., 1996, 39, 509–518.

    CAS  Google Scholar 

  29. W. Sun, C. C. Byeon, M. M. McKerns, C. M. Lawson, G. M. Gray and D. Wang, Optical limiting performances of asymmetric pentaazadentate porphyrin-like cadmium complexes. Appl. Phys. Lett., 1998, 73, 1167–1169.

    Article  CAS  Google Scholar 

  30. T. N. Singh-Rachford and F. N. Castellano, Supra-Nanosecond Dynamics of a Red-to-Blue Photon Upconversion System. Inorg. Chem., 2009, 48, 2541–2548.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix N. Castellano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, F., Sun, W. & Castellano, F.N. Texaphyrin sensitized near-IR-to-visible photon upconversion. Photochem Photobiol Sci 13, 813–819 (2014). https://doi.org/10.1039/c4pp00037d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00037d

Navigation