Issue 25, 2014

Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions

Abstract

A new approach to the facile preparation of anhydrous proton exchange membrane (PEM) enabled by artificial acid–base pairs is presented herein. Inspired by the bioadhesion of mussel, polydopamine-modified graphene oxide (DGO) sheets bearing –NH2 and –NH– groups are fabricated and then incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare the nanocomposite membrane. The DGO sheets are interconnected and homogeneously dispersed in SPEEK matrix, which provides unique rearrangement of the nanophase-separated structure and chain packing of nanocomposite membrane through interfacial electrostatic attractions. These attractions meanwhile induce the generation of acid–base pairs along the SPEEK–DGO interface, which then serve as long-range and low-energy-barrier pathways for proton hopping, imparting an enhanced proton transfer via the Grotthuss mechanism. In particular, under both hydrated and anhydrous conditions, the nanocomposite membrane exhibits much higher proton conductivity than the polymer control membrane. The enhanced proton conductivity results in the nanocomposite membrane having elevated cell performances under 120 °C and hydrous conditions, yielding a 47% increase in maximum current density and a 38% increase in maximum power density. Together with the stable conduction property, these results guarantee the nanocomposite membrane's promising prospects in high-performance fuel cell under anhydrous and elevated temperature conditions.

Graphical abstract: Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions

Supplementary files

Article information

Article type
Paper
Submitted
19 Dec 2013
Accepted
15 Apr 2014
First published
16 Apr 2014

J. Mater. Chem. A, 2014,2, 9548-9558

Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions

Y. He, J. Wang, H. Zhang, T. Zhang, B. Zhang, S. Cao and J. Liu, J. Mater. Chem. A, 2014, 2, 9548 DOI: 10.1039/C3TA15301K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements