Skip to main content
Log in

Computational investigation of the photochemical deoxygenation of thiophene- S-oxide and selenophene- Se-oxide

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

CASSCF and multireference MP2 calculations were carried out on thiophene- S-oxide (TO) and selenophene- Se-oxide (SeO), comparing the energies of the ground state to the first two electronically excited singlet and triplet states, using constrained optimizations and multiple fixed S–O or Se–O distances. For both molecules, one of the two triplet states smoothly dissociates to yield O(3P) with little or no barrier. Single point calculations are consistent with the same phenomenon occurring for dibenzothiophene- S-oxide (DBTO). This provides an explanation for the inefficient unimolecular photochemical dissociation of O(3P) from DBTO despite a phosphorescence energy below that of S–O dissociation, i.e., that S–O scission probably occurs from a spectroscopically unobserved triplet (T2) state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. I. W. J. Still, in The Chemistry of Sulfones and Sulfoxides, ed. S. Patai, Z. Rappaport and C. J. M. Stirling, John Wiley & Sons Ltd, New York, 1988, pp. 873–887.

  2. W. S. Jenks, D. D. Gregory, Y. Guo, W. Lee and T. Tetzlaff, in Organic Photochemistry, ed. V. Ramamurthy and K. S. Schanze, Marcel Dekker, Inc., New York, 1997, pp. 1–56.

  3. K. Arima, D. Ohira, M. Watanabe, A. Miura, S. Mataka, T. Thiemann, J. I. Valcarcel and D. J. Walton, Photochem. Photobiol. Sci. 2005, 4, 808–816.

    Article  CAS  PubMed  Google Scholar 

  4. G. M. Gurria and G. H. Posner, J. Org. Chem. 1973, 38, 2419–2420.

    Article  CAS  Google Scholar 

  5. J. R. Shelton and K. E. Davis, Int. J. Sulfur Chem. 1973, 8, 217–228.

    Google Scholar 

  6. Z. Wan and W. S. Jenks, J. Am. Chem. Soc. 1995, 117, 2667–2668.

    Article  CAS  Google Scholar 

  7. D. D. Gregory, Z. Wan and W. S. Jenks, J. Am. Chem. Soc. 1997, 119, 94–102.

    Article  CAS  Google Scholar 

  8. E. Lucien and A. Greer, J. Org. Chem. 2001, 66, 4576–4579.

    Article  CAS  PubMed  Google Scholar 

  9. K. B. Thomas and A. Greer, J. Org. Chem. 2003, 68, 1886–1891.

    Article  CAS  PubMed  Google Scholar 

  10. M. Nag and W. S. Jenks, J. Org. Chem. 2004, 69, 8177–8182.

    Article  CAS  PubMed  Google Scholar 

  11. M. Nag and W. S. Jenks, J. Org. Chem. 2005, 70, 3458–3463.

    Article  CAS  PubMed  Google Scholar 

  12. J. Korang, W. R. Grither and R. D. McCulla, J. Am. Chem. Soc. 2010, 132, 4466–4476.

    Article  CAS  PubMed  Google Scholar 

  13. R. Lüdersdorf, I. Khait, K. A. Muszkat, K. Praefcke and P. Margaretha, Phosphorus, Sulfur Silicon Relat. Elem. 1981, 12, 37–54.

    Article  Google Scholar 

  14. R. Lüdersdorf, I. Khait, K. A. Muszkat, K. Praefcke and P. Margaretha, Phosphorus, Sulfur Silicon Relat. Elem. 1981, 12, 37–54.

    Article  Google Scholar 

  15. D. D. Gregory and W. S. Jenks, J. Org. Chem. 1998, 63, 3859–3865.

    Article  CAS  Google Scholar 

  16. V. Desikan, Y. Liu, J. P. Toscano and W. S. Jenks, J. Org. Chem. 2007, 72, 6848–6859.

    Article  CAS  PubMed  Google Scholar 

  17. W. S. Jenks, W. Lee and D. Shutters, J. Phys. Chem. 1994, 98, 2282–2289.

    Article  CAS  Google Scholar 

  18. S. A. Stoffregen, R. D. McCulla, R. Wilson, S. Cercone, J. Miller and W. S. Jenks, J. Org. Chem. 2007, 72, 8235–8242.

    Article  CAS  PubMed  Google Scholar 

  19. W. S. Jenks, N. Matsunaga and M. Gordon, J. Org. Chem. 1996, 61, 1275–1283.

    Article  CAS  Google Scholar 

  20. E. M. Rockafellow, R. D. McCulla and W. S. Jenks, J. Photochem. Photobiol., A 2008, 198, 45–51.

    Article  CAS  Google Scholar 

  21. T. Tezuka, H. Suzuki and H. Miyazaki, Tetrahedron Lett. 1978 4885–4886.

    Google Scholar 

  22. R. D. McCulla and W. S. Jenks, J. Am. Chem. Soc. 2004, 126, 16058–16065.

    Article  CAS  PubMed  Google Scholar 

  23. T. Thiemann and K. G. Dongol, J. Chem. Res. (S) 2002, 2002, 303–308.

    Article  Google Scholar 

  24. T. Thiemann, D. Ohira, K. Arima, T. Sawada, S. Mataka, F. Marken, R. G. Compton, S. Bull and S. G. Davies, J. Phys. Org. Chem. 2000, 13, 648–653.

    Article  CAS  Google Scholar 

  25. D. D. Gregory, in Chemistry, Iowa State University, Ames, IA, 1998.

    Google Scholar 

  26. M. J. Heying, M. Nag and W. S. Jenks, J. Phys. Org. Chem. 2008 915–924. 10.1002/poc.1384

    Google Scholar 

  27. P. J. Kropp, G. E. Fryxell, M. W. Tubergen, M. W. Hager, G. D. Harris, Jr., T. P. McDermott, Jr. and R. Tornero-Velez, J. Am. Chem. Soc. 1991, 113, 7300–7310.

    Article  CAS  Google Scholar 

  28. J. W. Cubbage, T. A. Tetzlaff, H. Groundwater, R. D. McCulla, M. Nag and W. S. Jenks, J. Org. Chem. 2001, 66, 8621–8628.

    Article  CAS  PubMed  Google Scholar 

  29. P. Charlesworth, W. Lee and W. S. Jenks, J. Phys. Chem. 1996, 100, 10152–10155.

    Google Scholar 

  30. W. Hehre, Wavefunction, Inc., Karman Ave., Irvine, CA, 2002.

    Google Scholar 

  31. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen and A. et, J. Comput. Chem. 1993, 14, 1347–1363.

    Article  CAS  Google Scholar 

  32. B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell. 1998, 16, 133–138.

    Article  CAS  Google Scholar 

  33. H. Nakano, Chem. Phys. Lett. 1993, 207, 372–378.

    Article  CAS  Google Scholar 

  34. H. Nakano, J. Chem. Phys. 1993, 99, 7983–7992.

    Article  CAS  Google Scholar 

  35. L. Wang and J. Zhang, THEOCHEM 2002, 581, 129–138.

    Article  CAS  Google Scholar 

  36. O. N. Ventura, M. Kieninger, P. A. Denis and R. E. Cachau, Chem. Phys. Lett. 2002, 355, 207–213.

    Article  CAS  Google Scholar 

  37. O. N. Ventura, M. Kieninger and P. A. Denis, J. Phys. Chem. A 2003, 107, 518–521.

    Article  CAS  Google Scholar 

  38. P. J. A. Ruttink, P. C. Burgers, M. A. Trikoupis and J. K. Terlouw, Chem. Phys. Lett. 2001, 342, 447–451.

    Article  CAS  Google Scholar 

  39. S. S. Wesolowski, N. R. Brinkmann, E. F. Valeev, H. F. Schaefer, III, M. P. Repasky and W. L. Jorgensen, J. Chem. Phys. 2002, 116, 112–122.

    Article  CAS  Google Scholar 

  40. A. K. Wilson and T. H. Dunning, Jr., J. Chem. Phys. 2003, 119, 11712–11714.

    Article  CAS  Google Scholar 

  41. A. K. Wilson and T. H. Dunning, Jr., J. Phys. Chem. A 2004, 108, 3129–3133.

    Article  CAS  Google Scholar 

  42. J. M. L. Martin, J. Chem. Phys. 1998, 108, 2791–2800.

    Article  CAS  Google Scholar 

  43. N. X. Wang and A. K. Wilson, J. Phys. Chem. A 2003, 107, 6720–6724.

    Article  CAS  Google Scholar 

  44. R. D. Bell and A. K. Wilson, Chem. Phys. Lett. 2004, 394, 105–109.

    Article  CAS  Google Scholar 

  45. J. M. L. Martin, Chem. Phys. Lett. 1999, 310, 271–276.

    Article  CAS  Google Scholar 

  46. J. Korang, W. R. Grither and R. D. McCulla, J. Phys. Chem. A 2011, 115, 2859–2865.

    Article  CAS  PubMed  Google Scholar 

  47. D. D. Gregory and W. S. Jenks, J. Phys. Chem. A 2003, 107, 3414–3423.

    Article  CAS  Google Scholar 

  48. L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov and J. A. Pople, J. Chem. Phys. 1998, 109, 7764–7776.

    Article  CAS  Google Scholar 

  49. L. A. Curtiss, P. C. Redfern, V. Rassolov, G. Kedziora and J. A. Pople, J. Chem. Phys. 2001, 114, 9287–9295.

    Article  CAS  Google Scholar 

  50. P. Pouzet, I. Erdelmeier, D. Ginderow, J.-P. Mornon, P. Dansette and D. Mansuy, J. Chem. Soc., Chem. Commun. 1995 473–474.

    Google Scholar 

  51. K. R. Glaesemann, M. S. Gordon and H. Nakano, Phys. Chem. Chem. Phys. 1999, 1, 967–975.

    Article  CAS  Google Scholar 

  52. Y.-K. Choe, H. A. Witek, J. P. Finley and K. Hirao, J. Chem. Phys. 2001, 114, 3913–3918.

    Article  CAS  Google Scholar 

  53. M. S. Gordon, M. W. Schmidt, G. M. Chaban, K. R. Glaesemann, W. J. Stevens and C. Gonzalez, J. Chem. Phys. 1999, 110, 4199–4207.

    Article  CAS  Google Scholar 

  54. C. E. Moore, Tables of spectra of hydrogen, carbon, nitrogen, and oxygen, CRC Press Inc., Boca Raton, FL, 1993.

    Google Scholar 

  55. V. Desikan, Y. Liu, J. P. Toscano and W. S. Jenks, J. Org. Chem. 2008, 73, 4398–4414.

    Article  CAS  PubMed  Google Scholar 

  56. W. S. Jenks, M. J. Heying, S. A. Stoffregen and E. M. Rockafellow, J. Org. Chem. 2009, 74, 2765–2770.

    Article  CAS  PubMed  Google Scholar 

  57. S. A. Stoffregen, M. Heying and W. S. Jenks, J. Am. Chem. Soc. 2007, 129, 15746–15747.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stacey A. Stoffregen or William S. Jenks.

Additional information

Electronic supplementary information (ESI) available: Geometries and absolute energies of compounds. See DOI: 10.1039/c3pp50382h

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoffregen, S.A., Lee, S.Y., Dickerson, P. et al. Computational investigation of the photochemical deoxygenation of thiophene- S-oxide and selenophene- Se-oxide. Photochem Photobiol Sci 13, 431–438 (2014). https://doi.org/10.1039/c3pp50382h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50382h

Navigation