Skip to main content
Log in

Comparison of the photophysical properties of three phenothiazine derivatives: transient detection and singlet oxygen production

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

New methylene blue (NMB+) and methylene violet (MV) are known for their photosensitizing properties for singlet oxygen (1O2) generation upon visible-light irradiation, and various examples of their use in the photodynamic inactivation of microorganisms and for photomedicinal purposes have been reported. However, their photophysical properties have never been extensively and systematically analyzed and compared. In the current work, we studied their absorption and fluorescence behavior relative to their parent compound, methylene blue (MB+), detected the transient species generated upon excitation of the photosensitizers and determined their quantum yields of singlet oxygen production. We could measure very high quantum yields of singlet oxygen production for all the studied compounds. NMB+ appeared similar to MB+, even though it produces 1O2 much more efficiently, and was slightly influenced by the solvent. MV, in contrast, was much more sensitive to the chemical environment, and the transient species formed upon irradiation were different in methanol and acetonitrile. It appeared to be a very good singlet oxygen sensitizer, but the influence of the chemical environment should be carefully considered for any application. The comparative characterization of these sensitizers will represent a support for the determination and the understanding of the photochemical mechanisms occurring by using these phenothiazine dyes for various photobiological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mills, D. Hazafy, J. A. Parkinson, T. Tuttle, M. G. Hutchings, J. Phys. Chem. A 2009 113 9575–9576.

    Article  CAS  PubMed  Google Scholar 

  2. A. Mills, D. Hazafy, J. Parkinson, T. Tuttle, M. G. Hutchings, Dyes Pigm. 2011 88 149–155.

    Article  CAS  Google Scholar 

  3. F. Wilkinson, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data 1993 22 113–262.

    Article  CAS  Google Scholar 

  4. J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de Fátima Turchiello, M. S. Baptista, Photodiagn. Photodyn. Ther. 2005 2 175–191.

    Article  CAS  Google Scholar 

  5. W. M. Sharman, C. M. Allen, J. E. van Lier, Drug Discovery Today 1999 4 507–517.

    Article  CAS  PubMed  Google Scholar 

  6. M. Wainwright, Int. J. Antimicrob. Agents 2000 16 381–394.

    Article  CAS  PubMed  Google Scholar 

  7. M. Wainwright, Chem. Soc. Rev. 2002 31 128–136.

    Article  CAS  PubMed  Google Scholar 

  8. M. Wainwright, R. M. Giddens, Dyes Pigm. 2003 57 245–257.

    Article  CAS  Google Scholar 

  9. M. Wainwright, Photochem. Photobiol. Sci. 2004 3 406.

    Article  CAS  PubMed  Google Scholar 

  10. M. Wainwright, M. N. Byrne, M. A. Gattrell, J. Photochem. Photobiol., B 2006 84 227–230.

    Article  CAS  Google Scholar 

  11. M. Wainwright, H. Mohr, W. H. Walker, J. Photochem. Photobiol., B 2007 86 45–58.

    Article  CAS  Google Scholar 

  12. J. P. M. L. Rolim, M. A. S. de-Melo, S. F. Guedes, F. B. Albuquerque-Filho, J. R. de Souza, N. A. P. Nogueira, I. C. J. Zanin, L. K. A. Rodrigues, J. Photochem. Photobiol., B 2012 106 40–46.

    Article  CAS  Google Scholar 

  13. T. Ben Amor, G. Jori, Insect Biochem. Mol. 2000 30 915–925.

    Article  CAS  Google Scholar 

  14. H. C. Junqueira, D. Severino, L. G. Dias, M. S. Gugliotti, M. S. Baptista, Phys. Chem. Chem. Phys. 2002 4 2320–2328.

    Article  CAS  Google Scholar 

  15. F. Harris, Z. Sayed, S. Hussain, D. A. Phoenix, Photodiagn. Photodyn. 2004 1 231–239.

    Article  CAS  Google Scholar 

  16. X. Ragàs, X. He, M. Agut, M. Roxo-Rosa, A. Gonsalves, A. Serra, S. Nonell, Molecules 2013 18 2712–2725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. X. Ragàs, T. Dai, G. P. Tegos, M. Agut, S. Nonell, M. R. Hamblin, Lasers Surg. Med. 2010 42 384–390.

    Article  PubMed  PubMed Central  Google Scholar 

  18. G. Brecher, Am. J. Clin. Pathol. 1949 19 895.

    Article  CAS  PubMed  Google Scholar 

  19. W. N. Jensen, M. Montjar, E. Heinle Jr., F. Padilla, A. C. Trakatellis, Nouv. Rev. Fr. Hematol. 1967 7 841–846.

    CAS  PubMed  Google Scholar 

  20. S. Hussain, F. Harris, D. A. Phoenix, FEMS Immunol. Med. Microbiol. 2006 46 124–130.

    Article  CAS  PubMed  Google Scholar 

  21. S. J. Wagner, D. Robinette, R. Dodd, Transfusion 1993 33 713–716.

    Article  CAS  PubMed  Google Scholar 

  22. S. J. Wagner, A. Skripchenko, D. Robinette, J. W. Foley, L. Cincotta, Photochem. Photobiol. 1998 67 343–349.

    Article  CAS  PubMed  Google Scholar 

  23. A. Skripchenko, D. Robinette, S. J. Wagner, Photochem. Photobiol. 1997 65 451–455.

    Article  CAS  PubMed  Google Scholar 

  24. M. A. Houghtaling, R. Perera, K. E. Owen, S. Wagner, R. J. Kuhn, H. Morrison, Photochem. Photobiol. 2000 71 20–28.

    Article  CAS  PubMed  Google Scholar 

  25. H. Morrison, T. Mohammad, R. Kurukulasuriya, Photochem. Photobiol. 1997 66 245–252.

    Article  CAS  PubMed  Google Scholar 

  26. T. Mohammad, H. Morrison, J. Chromatogr., B 1997 704 265–275.

    Article  CAS  Google Scholar 

  27. S. Otsuki, T. Taguchi, Bull. Chem. Soc. Jpn. 1996 69 2525–2531.

    Article  CAS  Google Scholar 

  28. D. C. Neckers, J. Photochem. Photobiol., A 1989 47 1–29.

    Article  CAS  Google Scholar 

  29. F. Stracke, M. Heupel, E. Thiel, J. Photochem. Photobiol., A 1999 126 51–58.

    Article  CAS  Google Scholar 

  30. T. Manju, N. Manoj, A. M. Braun, E. Oliveros, Photochem. Photobiol. Sci. 2012 11 1744–1755.

    Article  CAS  PubMed  Google Scholar 

  31. R. Schmidt, E. Afshari, J. Phys. Chem. 1990 94 4377–4378.

    Article  CAS  Google Scholar 

  32. Y. Usui, H. Koike, Y. Kurimura, Bull. Chem. Soc. Jpn. 1987 60 3373–3378.

    Article  CAS  Google Scholar 

  33. S. Nonell and S. E. Braslavsky, in Methods in Enzymology, ed. H. S. Lester Packer, Academic Press, 2000, vol. 319, pp. 37–49.

    Article  CAS  PubMed  Google Scholar 

  34. A. M. Braun, E. Oliveros, Pure Appl. Chem. 1990 62 1467–1476.

    Article  CAS  Google Scholar 

  35. T. Aminian-Saghafi, G. Nasini, T. Caronna, A. M. Braun, E. Oliveros, Helv. Chim. Acta 1992 75 531–538.

    Article  CAS  Google Scholar 

  36. F. M. Cabrerizo, M. Laura Dántola, G. Petroselli, A. L. Capparelli, A. H. Thomas, A. M. Braun, C. Lorente, E. Oliveros, Photochem. Photobiol. 2007 83 526–534.

    Article  CAS  PubMed  Google Scholar 

  37. F. Wilkinson, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data 1995 24 663.

    Article  CAS  Google Scholar 

  38. C. Tournaire, S. Croux, M.-T. Maurette, I. Beck, M. Hocquaux, A. M. Braun, E. Oliveros, J. Photochem. Photobiol., B 1993 19 205–215.

    Article  CAS  Google Scholar 

  39. C. Martí, O. Jürgens, O. Cuenca, M. Casals, S. Nonell, J. Photochem. Photobiol., A 1996 97 11–18.

    Article  Google Scholar 

  40. R. Schmidt, C. Tanielian, R. Dunsbach, C. Wolff, J. Photochem. Photobiol., A 1994 79 11–17.

    Article  CAS  Google Scholar 

  41. E. Oliveros, P. Suardi-Murasecco, T. Aminian-Saghafi, A. M. Braun, H.-J. Hansen, Helv. Chim. Acta 1991 74 79–90.

    Article  CAS  Google Scholar 

  42. F. Ronzani, E. Arzoumanian, S. Blanc, P. Bordat, T. Pigot, C. Cugnet, E. Oliveros, M. Sarakha, C. Richard, S. Lacombe, Phys. Chem. Chem. Phys. 2013 15 17219–17232.

    Article  CAS  PubMed  Google Scholar 

  43. J. Chen, T. C. Cesario, P. M. Rentzepis, Chem. Phys. Lett. 2010 498 81–85.

    Article  CAS  Google Scholar 

  44. J. Olmsted, J. Phys. Chem. 1979 83 2581–2584.

    Article  CAS  Google Scholar 

  45. P. V. Kamat, N. N. Lichtin, J. Phys. Chem. 1981 85 814–818.

    Article  CAS  Google Scholar 

  46. P. V. Kamat, N. N. Lichtin, J. Phys. Chem. 1981 85 3864–3868.

    Article  CAS  Google Scholar 

  47. M. González-Béjar, P. Montes-Navajas, H. García, J. C. Scaiano, Langmuir 2009 25 10490–10494.

    Article  PubMed  CAS  Google Scholar 

  48. K. Kikuchi, S.-I. Tamura, C. Iwanaga, H. Kokubun, Y. Usui, Z. Phys. Chem. 1977 106 17–24.

    Article  CAS  Google Scholar 

  49. P. Murasecco-Suardi, E. Gassmann, A. M. Braun, E. Oliveros, Helv. Chim. Acta 1987 70 1760–1773.

    Article  CAS  Google Scholar 

  50. C. Flors, S. Nonell, J. Photochem. Photobiol., A 2004 163 9–12.

    Article  CAS  Google Scholar 

  51. C. Tanielian, L. Golder, C. Wolff, J. Photochem. 1984 25 117–125.

    Article  CAS  Google Scholar 

  52. D. E. Wetzler, D. García-Fresnadillo, G. Orellana, Phys. Chem. Chem. Phys. 2006 8 2249–2256.

    Article  CAS  PubMed  Google Scholar 

  53. M. A. J. Rodgers, J. Am. Chem. Soc. 1983 105 6201–6205.

    Article  CAS  Google Scholar 

  54. L. Cincotta, J. W. Foley, A. H. Cincotta, Proc. SPIE-Int. Soc. Opt. Eng. 1989 997 145–153.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Lacombe.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c3pp50246e

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronzani, F., Trivella, A., Arzoumanian, E. et al. Comparison of the photophysical properties of three phenothiazine derivatives: transient detection and singlet oxygen production. Photochem Photobiol Sci 12, 2160–2169 (2013). https://doi.org/10.1039/c3pp50246e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50246e

Navigation