Skip to main content
Log in

Synthesis and photophysical properties of chlorins bearing 0-4 distinct meso-substituents

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The presence of substituents at designated sites about the chlorin macrocycle can alter the spectral properties, a phenomenon that can be probed through synthesis. Prior syntheses have provided access to chlorins bearing distinct aryl substituents (individually or collectively) at the 5, 10, and 15-positions, but not the 20-position. A new Western half (5-phenyl-2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin) has been employed in condensation with an Eastern half (9-bromodipyrromethane-1-carboxaldehyde) followed by oxidative cyclization to give (5% yield) the zinc(ii) 20-phenylchlorin. Condensation of the same Western half and a diaryl-substituted Eastern half provided (11% yield) the zinc(ii) 5,10,20-triarylchlorin; demetalation with TFA followed by 15-bromination and Suzuki coupling gave the free base 5,10,15,20-tetraarylchlorin. Altogether, 10 new synthetic chlorins have been prepared. The near-UV (B) absorption band of the free base chlorins shifts bathochromically from 389 to 429 nm and that for the zinc chlorins from 398 to 420 nm as the number of meso-aryl rings is increased stepwise from 0-4. The long-wavelength (Qy) absorption band undergoes a bathochromic and hypochromic shift upon increase in number of meso-aryl groups. Regardless of the number and positions of the meso-aryl substituents (including “walking a phenyl group around the ring”), the respective fluorescence quantum yields (0.17 to 0.27) and singlet excited-state lifetimes (9.4 to 13.1 ns) are comparable among the free base chlorins and the same is true for the zinc chelates (0.057 to 0.080; 1.2 to 1.6 ns). Density functional theory calculations show that of the frontier molecular orbitals of the chlorin, the energy of the HOMO−1 is the most affected by meso-aryl substituents, undergoing progressive destabilization as the number of meso-aryl groups is increased. The availability of chlorins with 0-4 distinct meso-aryl substituents provides the individual stepping-stones to bridge the known unsubstituted chlorin and the meso-tetraarylchlorins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Scheer, An overview of chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications, in Chlorophylls and Bacteriochlorophylls. Biochemistry, Biophysics, Functions and Applications, ed. B. Grimm, R. J. Porra, W. Rüdiger and H. Scheer, Springer, Dordrecht, The Netherlands, 2006, vol. 25, pp. 1–26.

    Article  CAS  Google Scholar 

  2. J. H. C. Smith and A. Benitez, Chlorophylls: Analysis in plant materials, in Modern Methods of Plant Analysis, ed. K. Paech and M. V. Tracey, Springer-Verlag, Berlin, vol. IV, pp. 142-196.

  3. U. Eisner and R. P. Linstead, Chlorophyll and related substances. Part I. The synthesis of chlorin J. Chem. Soc. 1955 3742–3749.

    Google Scholar 

  4. G. D. Dorough and F. M. Huennekens, The spectra of α,β,γ,δ-tetraphenylchlorin and its metallo-derivatives J. Am. Chem. Soc. 1952 74 3974–3976.

    Article  CAS  Google Scholar 

  5. H. W. Whitlock Jr., R. Hanauer, M. Y. Oester and B. K. Bower, Diimide reduction of porphyrins J. Am. Chem. Soc. 1969 91 7485–7489.

    Article  CAS  Google Scholar 

  6. J. D. Keegan, A. M. Stolzenberg, Y.-C. Lu, R. E. Linder, G. Barth, A. Moscowitz, E. Bunnenberg and C. Djerassi, Magnetic circular dichroism studies. 60. Substituent-induced sign variation in the magnetic circular dichroism spectra of reduced porphyrins. 1. Spectra and band assignments J. Am. Chem. Soc. 1982 104 4305–4317.

    Article  CAS  Google Scholar 

  7. M. Meyer, H. Scheer and J. Breton, Probing native-like orientation of pigments in modified reaction centers from Rhodobacter sphaeroides R26 by linear dichroism FEBS Lett. 1996 393 131–134.

    Article  CAS  PubMed  Google Scholar 

  8. W. Flitsch, Hydrogenated porphyrin derivatives: hydroporphyrins Adv. Heterocycl. Chem. 1988 43 73–126.

    Article  CAS  Google Scholar 

  9. P. H. Hynninen, Chemistry of chlorophylls: Modifications, in Chlorophylls, ed. H. Scheer, CRC Press, Boca Raton, FL, USA, 1991, pp. 145–209.

    Google Scholar 

  10. K. M. Smith, Chemistry of chlorophylls: Synthesis, in Chlorophylls, ed. H. Scheer, CRC Press, Boca Raton, FL, USA, 1991, pp. 115–143.

    Google Scholar 

  11. F.-P. Montforts, B. Gerlach, F. Höper, Discovery and synthesis of less common natural hydroporphyrins Chem. Rev. 1994 94 327–347.

    Article  CAS  Google Scholar 

  12. F.-P. Montforts, M. Glasenapp-Breiling, The synthesis of chlorins, bacteriochlorins, isobacteriochlorins and higher reduced porphyrins Prog. Heterocycl. Chem. 1998 10 1–24.

    Article  CAS  Google Scholar 

  13. L. Jaquinod, Functionalization of 5,10,15,20-tetra-substituted porphyrins, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, San Diego, CA, 2000, vol. 1, pp. 201–237.

    CAS  Google Scholar 

  14. M. G. H. Vicente, Reactivity and functionalization of β-substituted porphyrins and chlorins, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, San Diego, CA, 2000, vol. 1, pp. 149–199.

    CAS  Google Scholar 

  15. R. K. Pandey and G. Zheng, Porphyrins as photosensitizers in photodynamic therapy, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, San Diego, CA, 2000, vol. 6, pp. 157–230.

    CAS  Google Scholar 

  16. F.-P. Montforts, M. Glasenapp-Breiling, Naturally occurring cyclic tetrapyrroles Fortschr. Chem. Org. Naturst. 2002 84 1–51.

    CAS  PubMed  Google Scholar 

  17. V. Y. Pavlov and G. V. Ponomarev, Modification of the peripheral substituents in chlorophylls a and b and their derivatives (review) Chem. Heterocycl. Compd. 2004 40 393–425.

    Article  CAS  Google Scholar 

  18. M. O. Senge, A. Wiehe, and C. Ryppa, Synthesis, reactivity and structure of chlorophylls, in Chlorophylls and Bacteriochlorophylls. Biochemistry, Biophysics, Functions and Applications, ed. B. Grimm, R. J. Porra, W. Rüdiger and H. Scheer, Springer, Dordrecht, The Netherlands, 2006, vol. 25, pp. 27–37.

    Article  CAS  Google Scholar 

  19. S. Fox and R. W. Boyle, Synthetic routes to porphyrins bearing fused rings Tetrahedron 2006 62 10039–10054.

    Article  CAS  Google Scholar 

  20. M. Galezowski and D. T. Gryko, Recent advances in the synthesis of hydroporphyrins Curr. Org. Chem. 2007 11 1310–1338.

    Article  CAS  Google Scholar 

  21. A. M. G. Silva and J. A. S. Cavaleiro, Porphyrins in Diels-Alder and 1,3-dipolar cycloaddition reactions, in Progress in Heterocyclic Chemistry, ed. G. W. Gribble and J. A. Joule, Elsevier, Amsterdam, 2008, vol. 19, pp. 44–69.

    Article  CAS  Google Scholar 

  22. M. M. Pereira, A. R. Abreu, N. P. F. Goncalves, M. J. F. Calvete, A. V. C. Simoes, C. J. P. Monteiro, L. G. Arnaut, M. E. Eusébio and J. Canotilho, An insight into solvent-free diimide porphyrin reduction: A versatile approach for meso-aryl hydroporphyrin synthesis Green Chem. 2012 14 1666–1672.

    Article  CAS  Google Scholar 

  23. M. O. Senge and J. C. Brandt, Temporfin (Foscan®, 5,10,15,20-tetra(m-hydroxyphenyl)chlorin) - A second-generation photosensitizer Photochem. Photobiol. 2011 87 1240–1296.

    Article  CAS  PubMed  Google Scholar 

  24. M. O. Senge, mTHPC - A drug on its way from second to third generation photosensitizer? Photodiagn. Photodyn. Ther. 2012 9 170–179.

    Article  CAS  Google Scholar 

  25. C. J. P. Monteiro, J. Pina, M. M. Pereira and L. G. Arnaut, On the singlet states of porphyrins, chlorins and bacteriochlorins and their ability to harvest red/infrared light Photochem. Photobiol. Sci. 2012 11 1233–1238.

    Article  CAS  PubMed  Google Scholar 

  26. E. F. F. Silva, F. A. Schaberle, C. J. P. Monteiro, J. M. Dabrowski and L. G. Arnaut, The challenging combination of intense fluorescence and high singlet oxygen quantum yield in photostable chlorins - a contribution to theranostics Photochem. Photobiol. Sci. 2013 12 1187–1192.

    Article  CAS  PubMed  Google Scholar 

  27. A. R. Battersby, C. J. Dutton and C. J. R. Fookes, Synthetic studies relevant to biosynthetic research on vitamin B12. Part 7. Synthesis of (±)-bonellin dimethyl ester J. Chem. Soc., Perkin Trans. 1 1988 1569–1576.

    Google Scholar 

  28. M. Ptaszek, B. E. McDowell, M. Taniguchi, H.-J. Kim and J. S. Lindsey, Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 1: Synthesis Tetrahedron 2007 63 3826–3839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. Taniguchi, M. Ptaszek, B. E. McDowell and J. S. Lindsey, Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 2: Derivatization Tetrahedron 2007 63 3840–3849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. K. Laha, C. Muthiah, M. Taniguchi, B. E. McDowell, M. Ptaszek and J. S. Lindsey, Synthetic chlorins bearing auxochromes at the 3- and 13-positions J. Org. Chem. 2006 71 4092–4102.

    Article  CAS  PubMed  Google Scholar 

  31. J.-P. Strachan, D. F. O’Shea, T. Balasubramanian and J. S. Lindsey, Rational synthesis of meso-substituted chlorin building blocks J. Org. Chem. 2000 65 3160–3172.

    Article  CAS  PubMed  Google Scholar 

  32. M. Taniguchi, D. Ra, G. Mo, T. Balasubramanian and J. S. Lindsey, Synthesis of meso-substituted chlorins via tetrahydrobilene-a intermediates J. Org. Chem. 2001 66 7342–7354.

    Article  CAS  PubMed  Google Scholar 

  33. M. Taniguchi, M. N. Kim, D. Ra and J. S. Lindsey, Introduction of a third meso substituent into 5,10-diaryl chlorins and oxochlorins J. Org. Chem. 2005 70 275–285.

    Article  CAS  PubMed  Google Scholar 

  34. H. L. Kee, C. Kirmaier, Q. Tang, J. R. Diers, C. Muthiah, M. Taniguchi, J. K. Laha, M. Ptaszek, J. S. Lindsey, D. F. Bocian and D. Holten, Effects of substituents on synthetic analogs of chlorophylls. Part 1: Synthesis, vibrational properties and excited-state decay characteristics Photochem. Photobiol. 2007 83 1110–1124.

    Article  CAS  PubMed  Google Scholar 

  35. H. L. Kee, C. Kirmaier, Q. Tang, J. R. Diers, C. Muthiah, M. Taniguchi, J. K. Laha, M. Ptaszek, J. S. Lindsey, D. F. Bocian and D. Holten, Effects of substituents on synthetic analogs of chlorophylls. Part 2: Redox properties, optical spectra and electronic structure Photochem. Photobiol. 2007 83 1125–1143.

    Article  CAS  PubMed  Google Scholar 

  36. R. B. Woodward and V. Skaric, A new aspect of the chemistry of chlorins J. Am. Chem. Soc. 1961 83 4676–4678.

    Article  CAS  Google Scholar 

  37. G. W. Kenner, S. W. McCombie and K. M. Smith, Pyrroles and related compounds. Part XXIV. Separation and oxidative degradation of chlorophyll derivatives J. Chem. Soc., Perkin Trans. 1 1973 2517–2523.

    Google Scholar 

  38. K. M. Smith, D. A. Goff and D. J. Simpson, Meso substitution of chlorophyll derivatives: Direct route for transformation of bacteriopheophorbides d into bacteriopheophorbides c J. Am. Chem. Soc. 1985 107 4946–4954.

    Article  CAS  Google Scholar 

  39. V. Wray, U. Jürgens, H. Brockmann Jr., Electrophilic reactions of chlorin derivatives and a comprehensive collection of 13C data of these products and closely related compounds Tetrahedron 1979 35 2275–2283.

    Article  CAS  Google Scholar 

  40. J. H. Mathewson, W. R. Richards and H. Rapoport, A nuclear magnetic resonance study of hydrogen exchange at methine positions in chlorophyll a, chlorophyll b, chlorobium chlorophyll-660, and bacteriochlorophyll Biochem. Biophys. Res. Commun. 1963 13 1–5.

    Article  CAS  PubMed  Google Scholar 

  41. K. M. Smith, G. M. F. Bisset and M. J. Bushell, meso-Methylporphyrins and -chlorins Bioorg. Chem. 1980 9 1–26.

    Article  CAS  Google Scholar 

  42. T. Ando, K. Irie, K. Koshimizu, T. Takemura, H. Nishino, A. Iwashima, S. Nakajima and I. Sakata, Synthesis, physicochemical properties and photocytotoxicity of five new δ-substituted chlorin e6 derivatives Tetrahedron 1990 46 5921–5930.

    Article  CAS  Google Scholar 

  43. S.-i. Sasaki, T. Mizoguchi and H. Tamiaki, A facile synthetic method for conversion of chlorophyll-a to bacteriochlorophyll-c J. Org. Chem. 2007 72 4566–4569.

    Article  CAS  PubMed  Google Scholar 

  44. R. F. Kelley, M. J. Tauber and M. R. Wasielewski, Intramolecular electron transfer through the 20-position of a chlorophyll a derivative: An unexpectedly efficient conduit for charge transport J. Am. Chem. Soc. 2006 128 4779–4791.

    Article  CAS  PubMed  Google Scholar 

  45. R. F. Kelley, M. J. Tauber and M. R. Wasielewski, Linker-controlled energy and charge transfer within chlorophyll trefoils Angew. Chem., Int. Ed. 2006 45 7979–7982.

    Article  CAS  Google Scholar 

  46. J. K. Laha, C. Muthiah, M. Taniguchi and J. S. Lindsey, A new route for installing the isocyclic ring in chlorins yielding 131-oxophorbines J. Org. Chem. 2006 71 7049–7052.

    Article  CAS  PubMed  Google Scholar 

  47. C. Muthiah, D. Lahaye, M. Taniguchi, M. Ptaszek and J. S. Lindsey, Regioselective bromination tactics in the de novo synthesis of chlorophyll b analogues J. Org. Chem. 2009 74 3237–3247.

    Article  CAS  PubMed  Google Scholar 

  48. D. E. Chumakov, A. V. Khoroshutin, A. V. Anisimov and K. I. Kobrakov, Bromination of porphyrins (review) Chem. Heterocycl. Compd 2009 45 259–283.

    Article  CAS  Google Scholar 

  49. J. S. Yadav, S. Abraham, B. V. S. Reddy and G. Sabitha, Addition of pyrroles to electron deficient olefins employing InCl3Tetrahedron Lett. 2001 42 8063–8065.

    Article  CAS  Google Scholar 

  50. C. B. Gairaud and G. R. Lappin, The synthesis of ω-nitrostyrenes J. Org. Chem. 1953 18 1–3.

    Article  CAS  Google Scholar 

  51. M. M. Campbell, N. Cosford, L. Zongli and M. Sainsbury, A new route to 3-heteroarylindoles Tetrahedron 1987 43 1117–1122.

    Article  CAS  Google Scholar 

  52. B. M. Trost, C. Müller, Asymmetric Friedel-Crafts alkylation of pyrroles with nitroalkenes using a dinuclear zinc catalyst J. Am. Chem. Soc. 2008 130 2438–2439.

    Article  CAS  PubMed  Google Scholar 

  53. Y.-F. Sheng, Q. Gu, A.-J. Zhang, S.-L. You, Chiral Brønsted acid-catalyzed asymmetric Friedel-Crafts alkylation of pyrroles with nitroolefins J. Org. Chem. 2009 74 6899–6901.

    Article  CAS  PubMed  Google Scholar 

  54. N. Yokoyama and T. Arai, Asymmetric Friedel-Crafts reaction of N-heterocycles and nitroalkenes catalyzed by imidazoline-aminophenol-Cu complex Chem. Commun. 2009 3285–3287.

    Google Scholar 

  55. A. M. A. Shumaila, V. G. Puranik and R. S. Kusurkar, Synthesis of tetrahydro-5-azaindoles and 5-azaindoles using Pictet-Spengler reaction-appreciable difference in products using different acid catalysts Tetrahedron 2011 67 936–942.

    Article  CAS  Google Scholar 

  56. G. Zhang, A heterotrimetallic Pd-Sm-Pd complex for asymmetric Friedel-Crafts alkylations of pyrroles with nitroalkenes Org. Biomol. Chem. 2012 10 2534–2536.

    Article  CAS  PubMed  Google Scholar 

  57. A. R. Battersby, C. J. R. Fookes and R. J. Snow, Synthetic studies relevant to biosynthetic research on vitamin B12. Part 1. Syntheses of C-methylated chlorins based on 1-pyrrolines (3,4-dihydropyrroles) J. Chem. Soc., Perkin Trans. 1 1984 2725–2732.

    Google Scholar 

  58. M. Krayer, T. Balasubramanian, C. Ruzié, M. Ptaszek, D. L. Cramer, M. Taniguchi and J. S. Lindsey, Refined syntheses of hydrodipyrrin precursors to chlorin and bacteriochlorin building blocks J. Porphyrins Phthalocyanines 2009 13 1098–1110.

    Article  CAS  Google Scholar 

  59. J. McNulty, J. A. Steere and S. Wolf, The ultrasound promoted Knoevenagel condensation of aromatic aldehydes Tetrahedron Lett. 1998 39 8013–8016.

    Article  CAS  Google Scholar 

  60. Z.-P. Zhan, J.-L. Yu, W.-Z. Yang, Bismuth trichloride-catalyzed C-alkylation of pyrroles with electron-deficient olefins Synth. Commun. 2006 36 1373–1382.

    Article  CAS  Google Scholar 

  61. J. M. Rodríguez and M. D. Pujol, Straightforward synthesis of nitroolefins by microwave- or ultrasound-assisted Henry reaction Tetrahedron Lett. 2011 52 2629–2632.

    Article  CAS  Google Scholar 

  62. J. K. Laha, S. Dhanalekshmi, M. Taniguchi, A. Ambroise and J. S. Lindsey, A scalable synthesis of meso-substituted dipyrromethanes Org. Process Res. Dev. 2003 7 799–812.

    Article  CAS  Google Scholar 

  63. P. D. Rao, B. J. Littler, G. R. Geier III and J. S., Lindsey, Efficient synthesis of monoacyl dipyrromethanes and their use in the preparation of sterically unhindered trans-porphyrins J. Org. Chem. 2000 65 1084–1092.

    Article  CAS  PubMed  Google Scholar 

  64. M. Taniguchi, M. Ptaszek, B. E. McDowell, P. D. Boyle and J. S. Lindsey, Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 3: Spectral and structural properties Tetrahedron 2007 63 3850–3863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. M. Gouterman, Optical spectra and electronic structure of porphyrins and related rings, in The Porphyrins, ed. D. Dolphin, Academic Press, New York, 1978, vol. 3, pp. 1–165.

    CAS  Google Scholar 

  66. J. W. Springer, K. M. Faries, H. L. Kee, J. R. Diers, C. Muthiah, O. Mass, C. Kirmaier, J. S. Lindsey, D. F. Bocian and D. Holten, Effects of substituents on synthetic analogs of chlorophylls. Part 3: The distinctive impact of auxochromes at the 7- versus 3-positions Photochem. Photobiol. 2012 88 651–674.

    Article  CAS  PubMed  Google Scholar 

  67. M. J. Crossley and L. G. King, A new method for regiospecific deuteriation and reduction of 5,10,15,20-tetraphenylporphyrins: Nucleophilic reaction of borohydride ion with 2-nitro-5,10,15,20-tetraphenylporphyrins J. Org. Chem. 1993 58 4370–4375.

    Article  CAS  Google Scholar 

  68. C. A. Rebeiz and F. C. Belanger, Chloroplast biogenesis—46. Calculation of net spectral shifts induced by axial ligand coordination in metalated tetrapyrroles Spectrochim. Acta, Part A 1984 40 793–806.

    Article  Google Scholar 

  69. G. Peychalh-Heiling and G. S. Wilson, Electrochemical studies of tetraphenylporphin, tetraphenylchlorin, and tetraphenylbacteriochlorin Anal. Chem. 1971 43 550–556.

    Article  Google Scholar 

  70. H. W. Whitlock and M. Y. Oester, Behavior of di- and tetrahydroporphyrins under alkaline conditions. Direct observation of the chlorin-phlorin equilibrium J. Am. Chem. Soc. 1973 95 5738–5741.

    Article  CAS  PubMed  Google Scholar 

  71. S. E. Vitols, S.-i. Terashita, M. E. Blackwood Jr., R. Kumble, Y. Ozaki and T. G. Spiro, Resonance Raman characterization of the triplet state of zinc tetraphenylchlorin J. Phys. Chem. 1995 99 7246–7250.

    Article  CAS  Google Scholar 

  72. M. E. Blackwood Jr., C.-Y. Lin, S. R. Cleary, M. M. McGlashen and T. G. Spiro, A resonance Raman spectroelectrochemical study of the Zn(ii) tetraphenylchlorin anion J. Phys. Chem. A. 1997 101 255–258.

    Article  CAS  Google Scholar 

  73. U. Eisner, Some novel hydroporphyrins J. Chem. Soc. 1957 3461–3469.

    Google Scholar 

  74. J. R. Miller and G. D. Dorough, Pyridinate complexes of some metallo-derivatives of tetraphenylporphine and tetraphenylchlorin J. Am. Chem. Soc. 1952 74 3977–3981.

    Article  CAS  Google Scholar 

  75. E. A. Borisevich, G. D. Egorova, V. N. Knyukshto and K. N. Solovev, Photophysical processes in para-halogen derivatives of tetraphenylporphin and tetraphenyl chloride Opt. Spectrosc. 1987 63 34–37.

    Google Scholar 

  76. E. A. Borisevich, G. D. Egorova, V. N. Knyukshto and K. N. Solovev, Destructive interference of spin-orbit perturbations in metal complexes of halogen derivatives of tetraphenylchlorine Opt. Spectrosc. 1984 56 255–258.

    Google Scholar 

  77. J. M. Sutton, N. Fernandez and R. W. Boyle, Functionalized diphenylchlorins and bacteriochlorins: their synthesis and bioconjugation for targeted photodynamic therapy and tumour cell imaging J. Porphyrins Phthalocyanines 2000 4 655–658.

    Article  CAS  Google Scholar 

  78. T. Y. Wang, J. R. Chen and J. S. Ma, Diphenylchlorin and diphenylbacteriochlorin: synthesis, spectroscopy and photosensitizing properties Dyes Pigm. 2002 52 199–208.

    Article  Google Scholar 

  79. L. Bourré, G. Simonneaux, Y. Ferrand, S. Thibaut, Y. Lajat and T. Patrice, Synthesis, and in vitro and in vivo evaluation of a diphenylchlorin sensitizer for photodynamic therapy J. Photochem. Photobiol., B 2003 69 179–192.

    Article  CAS  Google Scholar 

  80. Y. Ferrand, L. Bourré, G. Simonneaux, S. Thibaut, F. Odobel, Y. Lajat and T. Patrice, Hydroporphyrins as tumour photosensitizers: Synthesis and photophysical studies of 2,3-dihydro-5,15-di(3,5-dihydroxyphenyl) porphyrin Bioorg. Med. Chem. Lett. 2003 13 833–835.

    Article  CAS  PubMed  Google Scholar 

  81. X. Shan, T. Wang, S. Li, L. Yang, L. Fu, G. Yang, Z. Wang and J. S. Ma, Photophysical properties of diphenyl-2,3-dihydroxychlorin and diphenylchlorin J. Photochem. Photobiol., B 2006 82 140–145.

    Article  CAS  Google Scholar 

  82. J. S. Lindsey, Synthetic routes to meso-patterned porphyrins Acc. Chem. Res. 2010 43 300–311.

    Article  CAS  PubMed  Google Scholar 

  83. M. O. Senge, Stirring the porphyrin alphabet soup-functionalization reactions for porphyrins Chem. Commun. 2011 47 1943–1960.

    Article  CAS  Google Scholar 

  84. W. G. O’Neal and P. A. Jacobi, Toward a general synthesis of chlorins J. Am. Chem. Soc. 2008 130 1102–1108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. C. Ryppa, M. O. Senge, S. S. Hatscher, E. Kleinpeter, P. Wacker, U. Schilde and A. Wiehe, Synthesis of mono- and disubstituted porphyrins: A and 5,10-A2-type systems Chem.-Eur. J. 2005 11 3427–3442.

    Article  CAS  PubMed  Google Scholar 

  86. M. Gouterman, Study of the effects of substitution on the absorption spectra of porphin J. Chem. Phys. 1959 30 1139–1161.

    Article  CAS  Google Scholar 

  87. M. Gouterman, Spectra of porphyrins J. Mol. Spectrosc. 1961 6 138–163.

    Article  CAS  Google Scholar 

  88. O. Mass, M. Taniguchi, M. Ptaszek, J. W. Springer, K. M. Faries, J. R. Diers, D. F. Bocian, D. Holten and J. S. Lindsey, Structural characteristics that make chlorophylls green: interplay of hydrocarbon skeleton and substituents New J. Chem. 2011 35 76–88.

    Article  CAS  Google Scholar 

  89. E. Yang, C. Kirmaier, M. Krayer, M. Taniguchi, H.-J. Kim, J. R. Diers, D. F. Bocian, J. S. Lindsey and D. Holten, Photophysical properties and electronic structure of stable, tunable synthetic bacteriochlorins: Extending the features of native photosynthetic pigments J. Phys. Chem. B 2011 115 10801–10816.

    Article  CAS  PubMed  Google Scholar 

  90. N. Srinivasan, C. A. Haney, J. S. Lindsey, W. Zhang and B. T. Chait, Investigation of MALDI-TOF mass spectrometry of diverse synthetic metalloporphyrins, phthalocyanines and multiporphyrin arrays J. Porphyrins Phthalocyanines 1999 3 283–291.

    Article  CAS  Google Scholar 

  91. G. Weber and F. W. J. Teale, Determination of the absolute quantum yield of fluorescent solutions Trans. Faraday Soc. 1957 53 646–655.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Lindsey.

Additional information

Electronic supplementary information (ESI) available: Synthesis of a meso-aryl-substituted Western half. See DOI: 10.1039/c3pp50240f

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aravindu, K., Kim, HJ., Taniguchi, M. et al. Synthesis and photophysical properties of chlorins bearing 0-4 distinct meso-substituents. Photochem Photobiol Sci 12, 2089–2109 (2013). https://doi.org/10.1039/c3pp50240f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50240f

Navigation