Skip to main content
Log in

Energy and electron transfer processes in polymeric nanoparticles

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We report herein a study on photoinduced electron transfer (eT) and energy transfer (ET) processes occurring between 9-methylanthracene-acrylate (A) and N,N-dimethylaniline-acrylate (D) derivatives incorporated into polymeric nanoparticles (NP). Five types of NPs were synthesized: PAD0, PAD25, PAD75, PD25, and PD75. All NPs are composed of a crosslinked polymer matrix of methyl methacrylate and ethylene glycol dimethacrylate. In addition, PAD0, PAD25 and PAD75 contain low doping levels of A. For PAD25 and PAD75, 25% and 75% of the mole fraction of methyl methacrylate is replaced by D, respectively. PD25 and PD75 were prepared as above but without A. NPs (diameter 6-9 nm) dispersed in organic solvents were characterized based on their UV-visible absorption, emission, excitation, and excitation anisotropy spectra and time dependent absorption and emission spectroscopy techniques. The emission decay profiles of A and D were always complex. Results indicate that A senses two distinct environments in all NPs. The emission quenching of PAD0 by DMA in DCM solutions is dynamic, and it is apparent that a significant fraction of A is inaccessible to the quencher. The emission of A is efficiently quenched by the presence of D in PAD25 and PAD75. The intra-NP photoinduced eT quenching mechanism has static and dynamic components. Selective excitation of D in PAD25 and PAD75 leads to the formation of the excited state of A via a singlet-singlet ET Föster type mechanism. Results indicate that both intra-NP eT and ET processes are more efficient in PAD75 due to the reduced average D*-A separation in these NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

9-Methylanthracene-acrylate derivative (9-anthracenylmethyl methacrylate) incorporated into the polymeric nanoparticles

α i :

The corresponding amplitude of the ith component of the multiexponential decay

D:

N,N-Dimethylaniline-acrylate derivative (N-(4-dimethylamino-benzyl)-2-methyl-acrylamide) incorporated into the polymeric nanoparticles

DCM:

Dichloromethane

DLS:

Dynamic light scattering

EGDMA:

Ethylene glycol dimethacrylate

EI method:

The lifetime’s distribution analysis software provided by Edinburgh Instruments

eT:

Electron transfer process

ET:

Energy transfer process

k q :

Quenching rate constant

K SV :

Stern-Volmer rate constant

9-MA:

9-Methylanthracene

MMA:

Methyl methacrylate

NPs:

Nanoparticles

PAD0:

NP composed of a crosslinked polymer matrix of methyl methacrylate, ethylene glycol dimethacrylate and a low doping level of A

PAD25:

NP composed of a crosslinked polymer matrix of methyl methacrylate, ethylene glycol dimethacrylate, D and a low doping level of A. 25% of the mole fraction of methyl methacrylate (relative to PAD0) is replaced by D

PAD75:

NP composed of a crosslinked polymer matrix of methyl methacrylate and ethylene glycol dimethacrylate, D and a low doping level of A. 75% of the mole fraction of methyl methacrylate (relative to PAD0) is replaced by D

PD25:

NP composed of a crosslinked polymer matrix of methyl methacrylate, ethylene glycol dimethacrylate and D. 25% of the mole fraction of methyl methacrylate (relative to PAD0) is replaced by D

PD75:

NP composed of a crosslinked polymer matrix of methyl methacrylate, ethylene glycol dimethacrylate and D. 75% of the mole fraction of methyl methacrylate (relative to PAD0) is replaced by D

PeT:

Photoinduced electron transfer process

r:

Excitation steady-state anisotropy spectrum

R 0 :

Critical distance for the Föster resonance ET process

R AD :

Radius of the sphere of action (Perrin’s model)

RW:

Relative weight

TCSPC instrument:

Time-correlated single-photon counting fluorometer

THF:

Tetrahydrofuran

TRES:

Time resolved emission spectrum

V:

Volume of the sphere of action (Perrin’s model)

α i :

Opulation of fluorophores characterized by an emission lifetime τi in the continuous distribution of the lifetime model assumed by the EI method

τ:

Fluorescence lifetime

τ M :

Mean fluorescence lifetime

Φ ET :

Efficiency for energy transfer

ϕ f :

Fluorescence quantum yield

σ:

Standard deviation of a Gaussian distribution

References

  1. Molecularly imprinted materials: science and technology, ed. M. Yan and O. Ramström, CRC press, New York, 2005.

    Google Scholar 

  2. Á. Valero-Navarro, M. Gómez-Romero, J. F. Fernández-Sánchez, P. A. G. Cormack, A. Segura-Carretero, A. Fernández-Gutiérrez, Synthesis of caffeic acid molecularly imprinted polymer microspheres and high-performance liquid chromatography evaluation of their sorption properties J. Chromatogr., A 2011 1218 7289–7296.

    Article  CAS  Google Scholar 

  3. M. C. Moreno-Bondi, F. Navarro-Villoslada, E. Benito-Pena and J. L. Urraca, Molecularly Imprinted Polymers as Selective Recognition Elements in Optical Sensing Curr. Anal. Chem. 2008 4 316–340.

    Article  CAS  Google Scholar 

  4. D. Cunliffe, A. Kirby and C. Alexander, Molecularly imprinted drug delivery systems Adv. Drug Delivery Rev. 2005 57 1836–1853.

    CAS  Google Scholar 

  5. S. Gao, W. Wang, and B. Wang, Molecularly Imprinted Materials as Recognition Elements in Optical Sensors, in Molecularly Imprinted Materials. Science and Technology, ed. M. Yan and O. Ramstrom, M. Dekker, New York, 2005.

    Google Scholar 

  6. H. Kim and G. Guiochon, Thermodynamic Studies of the Solvent Effects in Chromatography on Molecularly Imprinted Polymers. 3. Nature of the Organic Mobile Phase Anal. Chem. 2005 77 2496–2504.

    Article  CAS  PubMed  Google Scholar 

  7. B. Wandelt, P. Turkewitsch, S. Wysocki and G. D. Darling, Fluorescent molecularly imprinted polymer studied by time-resolved fluorescence spectroscopy Polymer 2002 43 2777–2785.

    Article  CAS  Google Scholar 

  8. C. Lindstrom and X. Zhu, Photoinduced electron transfer at molecule-metal interfaces Chem. Rev. 2006 106 4281–4300.

    Article  CAS  PubMed  Google Scholar 

  9. B. O’Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized Nature 1991 353 737–740.

    Article  Google Scholar 

  10. M. Grätzel, Photoelectrochemical cells Nature 2001 414 338–344.

    Article  PubMed  Google Scholar 

  11. U. Bach, D. Lupo, P. Comte, J. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies Nature 1998 395 583–585.

    Article  CAS  Google Scholar 

  12. J. B. Asbury, E. Hao, Y. Wang, H. N. Ghosh and T. Lian, Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films J. Phys. Chem. B 2001 105 4545–4557.

    Article  CAS  Google Scholar 

  13. A. P. Kulkarni, C. J. Tonzola, A. Babel and S. A. Jenekhe, Electron Transport Materials for Organic Light-Emitting Diodes Chem. Mater. 2004 16 4556–4573.

    Article  CAS  Google Scholar 

  14. P.-T. Chou and Y. Chi, Phosphorescent Dyes for Organic Light-Emitting Diodes Chem.-Eur. J. 2007 13 380–395.

    Article  CAS  PubMed  Google Scholar 

  15. M. C. Gather, A. Köhnen and K. Meerholz, White Organic Light-Emitting Diodes Adv. Mater. 2011 23 233–248.

    Article  CAS  PubMed  Google Scholar 

  16. J. Mabeck and G. Malliaras, Chemical and biological sensors based on organic thin-film transistors Anal. Bioanal. Chem. 2006 384 343–353.

    Article  CAS  PubMed  Google Scholar 

  17. C. D. Dimitrakopoulos and P. R. Malenfant, Organic thin film transistors for large area electronics Adv. Mater. 2002 14 99–117.

    Article  CAS  Google Scholar 

  18. H. Sirringhaus, Device Physics of Solution-Processed Organic Field-Effect Transistors Adv. Mater. 2005 17 2411–2425.

    Article  CAS  Google Scholar 

  19. J. Zaumseil and H. Sirringhaus, Electron and ambipolar transport in organic field-effect transistors Chem. Rev. 2007 107 1296–1323.

    Article  CAS  PubMed  Google Scholar 

  20. J. C. Scott and L. D. Bozano, Nonvolatile Memory Elements Based on Organic Materials Adv. Mater. 2007 19 1452–1463.

    Article  CAS  Google Scholar 

  21. B. Liu and G. C. Bazan, Optimization of the Molecular Orbital Energies of Conjugated Polymers for Optical Amplification of Fluorescent Sensors J. Am. Chem. Soc. 2006 128 1188–1196.

    Article  CAS  PubMed  Google Scholar 

  22. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho and H. Dai, Nanotube Molecular Wires as Chemical Sensors Science 2000 287 622–625.

    Article  CAS  PubMed  Google Scholar 

  23. P. J. S. Gomes, C. Serpa, R. M. D. Nunes, L. G. Arnaut, S. o. J. Formosinho, Exothermic Rate Restrictions in Long-Range Photoinduced Charge Separations in Rigid Media J. Phys. Chem. A 2010 114 2778–2787.

    Article  CAS  PubMed  Google Scholar 

  24. O. S. Wenger, B. S. Leigh, R. M. Villahermosa, H. B. Gray and J. R. Winkler, Electron Tunneling Through Organic Molecules in Frozen Glasses Science 2005 307 99–102.

    Article  CAS  PubMed  Google Scholar 

  25. M. A. Fox, Introduction - Electron Transfer: A Critical Link between Subdisciplines in Chemistry Chem. Rev. 1992 92 365–368.

    Article  Google Scholar 

  26. A. Ponce, H. B. Gray and J. R. Winkler, Electron Tunneling through Water: Oxidative Quenching of Electronically Excited Ru(tpy)22+ (tpy = 2,2′:6,2′′-terpyridine) by Ferric Ions in Aqueous Glasses at 77 K J. Am. Chem. Soc. 2000 122 8187–8191.

    Article  CAS  Google Scholar 

  27. T. Guarr, M. E. McGuire and G. McLendon, Long range photoinduced electron transfer in a rigid polymer J. Am. Chem. Soc. 1985 107 5104–5111.

    Article  CAS  Google Scholar 

  28. H. Ohkita and S. Ito, Transient absorption spectroscopy of polymer-based thin-film solar cells Polymer 2011 52 4397–4417.

    Article  CAS  Google Scholar 

  29. S. S. Atik and J. K. Thomas, Photoinduced electron transfer in organized assemblies J. Am. Chem. Soc. 1981 103 3550–3555.

    Article  CAS  Google Scholar 

  30. S. S. Atik and J. K. Thomas, Photochemistry in polymerized microemulsion systems J. Am. Chem. Soc. 1982 104 5868–5874.

    Article  CAS  Google Scholar 

  31. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, ACS Publications, New York and London, 2nd edn, 1971.

    Google Scholar 

  32. J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, New York, 3rd edn, 2006.

    Book  Google Scholar 

  33. B. Valeur, Molecular fluorescence: principles and applications, Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  34. A. Siemiarczuk, B. D. Wagner and W. R. Ware, Comparison of the maximum entropy and exponential series methods for the recovery of distributions of lifetimes from fluorescence lifetime data J. Phys. Chem. 1990 94 1661–1666.

    Article  CAS  Google Scholar 

  35. M. A. El-Kemary, I. M. El-Mehasseb, Global and distribution analysis of fluorescence decays and spectrofluorimetric determination of stoichiometry and association constant of the inclusion complex of 2-amino-5,6-dimethyl-benzimidazole with β-cyclodextrin Talanta 2004 62 317–322.

    Article  CAS  PubMed  Google Scholar 

  36. Operating-Instructions, Edinburgh Analytical Instruments, Riccarton, Currie, Edinburgh, UK, EHI4 4AP, 1995.

  37. J. Malicka, R. Ganzynkowicz, M. Groth, C. Czaplewski, J. Karolczak, A. Liwo and W. Wiczk, Fluorescence decay time distribution analysis of cyclic enkephalin analogues; Influence of solvent and Leu configuration in position 5 on conformation Acta Biochim. Pol. 2001 48 95–102.

    Article  CAS  PubMed  Google Scholar 

  38. J. K. McVey, D. M. Shold and N. C. Yang, Direct observation and characterization of anthracene excimer in solution J. Chem. Phys. 1976 65 3375–3376.

    Article  CAS  Google Scholar 

  39. C. Wang, J. Xu and R. G. Weiss, Factors Influencing Orientations of Covalently-Attached and Doped Aromatic Groups in Stretched Polyethylene Films J. Phys. Chem. B 2003 107 7015–7025.

    Article  CAS  Google Scholar 

  40. K. L. Tan and F. E. Treloar, Solubilization of 9-methylanthracene by the hypercoiled form of poly(methacrylic acid) in water: fluorescence decay and rotational diffusion measurements Chem. Phys. Lett. 1980 73 234–239.

    Article  CAS  Google Scholar 

  41. M. J. Tiera and M. G. Neumann, Anthracene-Bound Fluorescence Studies of Methacrylic Acid-co-Methylmethacrylate Copolymers J. Braz. Chem. Soc. 1995 6 191–197.

    Article  CAS  Google Scholar 

  42. E. Blatt, F. E. Treloar, K. P. Ghiggino and R. G. Gilbert, Viscosity and temperature dependence of fluorescence lifetimes of anthracene and 9-methylanthracene J. Phys. Chem. 1981 85 2810–2816.

    Article  CAS  Google Scholar 

  43. M. F. Budyka and M. V. Alfimov, Photochemical reactions of complexes of aromatic amines with polyhalomethanes Russ. Chem. Rev. 1995 64 705.

    Article  Google Scholar 

  44. M. Mac, J. Najbar and J. Wirz, Fluorescence quenching of derivatives of anthracene by organic electron donors and acceptors in acetonitrile. Electron and proton transfer mechanism Chem. Phys. Lett. 1995 235 187–194.

    Article  CAS  Google Scholar 

  45. G. J. Kavarnos and N. J. Turro, Photosensitization by reversible electron transfer: theories, experimental evidence, and examples Chem. Rev. 1986 86 401–449.

    Article  CAS  Google Scholar 

  46. M. Ottolenghi, C. R. Goldschmidt and R. Potashnik, Intersystem crossing in the charge-transfer quenching of molecular fluorescence J. Phys. Chem. 1971 75 1025–1031.

    Article  CAS  Google Scholar 

  47. H. Beens, H. Knibbe and A. Weller, Dipolar Nature of Molecular Complexes Formed in the Excited State J. Chem. Phys. 1967 47 1183–1184.

    Article  CAS  Google Scholar 

  48. J. Keizer, Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots J. Am. Chem. Soc. 1983 105 1494–1498.

    Article  CAS  Google Scholar 

  49. F. Perrin, C. R. Hebd. Seances Acad. Sci. 1924 178 1978–1980.

    CAS  Google Scholar 

  50. A. Reddy, J. Thipperudrappa, D. Biradar, M. Lagare and S. Hanagodimath, Fluorescence quenching of anthracene by aniline in different solvents Indian J. Pure Appl. Phys. 2004 42 648–652.

    CAS  Google Scholar 

  51. Y. H. Zhao, M. H. Abraham and A. M. Zissimos, Fast Calculation of van der Waals Volume as a Sum of Atomic and Bond Contributions and Its Application to Drug Compounds J. Org. Chem. 2003 68 7368–7373.

    Article  CAS  PubMed  Google Scholar 

  52. W. R. Ware, D. Watt and J. D. Holmes, Exciple photophysics. I. The α-Cyanonaphthalene-Olefin System J. Am. Chem. Soc. 1974 96 7853–7860.

    Article  CAS  Google Scholar 

  53. J. B. Birks, D. J. Dyson and I. H. Munro, ‘Excimer’ Fluorescence. II. Lifetime Studies of Pyrene Solutions Proc. R. Soc. London, Ser. A 1963 275 575–588.

    Article  CAS  Google Scholar 

  54. M. S. Altamirano, M. del Valle Bohorquez, C. M. Previtali and C. A. Chesta, Proton-Transfer Mediated Quenching of Pyrene/Indole Charge-Transfer States in Isooctane Solutions J. Phys. Chem. A 2008 112 589–593.

    Article  CAS  PubMed  Google Scholar 

  55. M. Ottolenghi, Charge-transfer complexes in the excited state. Laser photolysis studies Acc. Chem. Res. 1973 6 153–160.

    Article  CAS  Google Scholar 

  56. G. P. Zanini and H. A. Montejano, Solvent Effects in the Electron Transfer Quenching of the Triplet State of Anthracene by p-Benzoquinones Bol. Soc. Chil. Quím. 2001 46 81–90.

    Article  CAS  Google Scholar 

  57. T. Shida, Electronic absorption spectra of radical ions, Elsevier Amsterdam, 1988.

    Google Scholar 

  58. S. U. Pedersen, T. Bo Christensen, T. Thomasen and K. Daasbjerg, New methods for the accurate determination of extinction and diffusion coefficients of aromatic and heteroaromatic radical anions in N,N-dimethylformamide J. Electroanal. Chem. 1998 454 123–143.

    Article  CAS  Google Scholar 

  59. N. Beens and A. Weller, Excited molecular π-complexes in solution, in Organic molecular photophysics, ed. J. Birks, Wiley and Sons, New York, 1975, pp. 159–215.

    Google Scholar 

  60. M. Lee and M. Lee, Structure and Solvent Dependence of the Exciplex Formation and Dissociation of Anthracene/N,N-Dimethylaniline Derivatives in n-Alkane Solvents Bull. Korean Chem. Soc. 1997 18 1054–1055.

    CAS  Google Scholar 

  61. J. C. del Valle, A. M. Turek, N. D. Tarkalanov and J. Saltiel, Distortion of the Fluorescence Spectrum of Anthracene with Increasing Laser Pulse Excitation Energy J. Phys. Chem. A 2002 106 5101–5104.

    Article  CAS  Google Scholar 

  62. E. R. Carraway, J. N. Demas and B. A. DeGraff, Luminescence quenching mechanism for microheterogeneous systems Anal. Chem. 1991 63 332–336.

    Article  CAS  Google Scholar 

  63. N. Song, H. Zhu, S. Jin, W. Zhan and T. Lian, Poisson-Distributed Electron-Transfer Dynamics from Single Quantum Dots to C60 Molecules ACS Nano 2010 5 613–621.

    Article  PubMed  CAS  Google Scholar 

  64. A. Ito, D. J. Stewart, Z. Fang, M. K. M. K. Brennaman and T. J. Meyer, Sensitization of ultra-long-range excited-state electron transfer by energy transfer in a polymerized film Proc. Natl. Acad. Sci. U. S. A. 2012 109 15132–15135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Chesta.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c3pp50183c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solis, C., Torres, J.J., Gsponer, N. et al. Energy and electron transfer processes in polymeric nanoparticles. Photochem Photobiol Sci 12, 2146–2159 (2013). https://doi.org/10.1039/c3pp50183c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50183c

Navigation