Skip to main content
Log in

Folate-targeted PEGylated liposomes improve the selectivity of PDT with meta-tetra(hydroxyphenyl)-chlorin (m-THPC)

Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The folate receptor (FR) is over-expressed in many human tumours and is being intensively studied also in the field of nanomedicine as a target to enhance the selectivity of drug delivery to cancer cells by using nanocarriers bearing folic acid (FA) on their surface. In this study we report the encapsulation of the photosensitizer (PS) meta-tetra(hydroxyphenyl)chlorin (m-THPC) in FA-targeted PEGylated liposomes used as a novel drug delivery system for photodynamic therapy (PDT) of cancer. Our in vitro investigations revealed that only a modest fraction of targeted liposomes were internalized by specific endocytosis in FR-positive KB cells. However, FA-liposomes doubled the uptake of the entrapped m-THPC with respect to un-targeted liposomes and enhanced the photo-induced cytotoxicity in KB cells. In contrast, in FRnegative A549 cells FA-targeted or un-targeted liposomes exhibited a very similar extent of internalization and as a consequence the same photo-killing efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab, Photodynamic therapy of cancer: an update, CA Cancer J. Clin., 2011, 61, 250–281.

    Article  PubMed  PubMed Central  Google Scholar 

  2. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  3. S. B. Brown, E. A. Brown, I. Walker, The present and future role of photodynamic therapy in cancer treatment, Lancet Oncol., 2004, 5, 497–508.

    Article  CAS  PubMed  Google Scholar 

  4. M. R. Hamblin, T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci, 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. C. Hopper, Photodynamic therapy: a clinical reality in the treatment of cancer, Lancet Oncol., 2000, 1, 212–219.

    Article  CAS  PubMed  Google Scholar 

  6. C. Hadjur, N. Lange, J. Rebstein, P. Monnier, H. Van der Bergh, G. Wagnières, Spectroscopic studies of photobleaching and photoproduct formation of meta(tetrahydroxyphenyl)chlorin (mTHPC) used in photodynamic therapy. The production of singlet oxygen by mTHPC, J. Photochem. Photobiol., B, 1998, 45, 170–178.

    Article  CAS  Google Scholar 

  7. D. Bechet, P. Couleaud, C. Frochot, M. L. Viriot, F. Guillemin, M. Barbery-Heyob, Nanoparticles as vehicles for delivery of photodynamic therapy agents, Trends Biotechnol., 2008, 26, 612–621.

    Article  CAS  PubMed  Google Scholar 

  8. A. Gupta, S. Wang, P. Pera, K. V. Rao, N. Patel, T. Y. Ohulchanskyy, J. Missert, J. Morgan, Y. E. Koo-Lee, R. Kopelman, R. K. Pandey, Multifunctional nanoplatforms for fluorescence imaging and photodynamic therapy developed by post-loading photosensitizer and fluorophore to polyacrylamide nanoparticles, Nanomedicine, 2012, 8, 941–950.

    Article  CAS  PubMed  Google Scholar 

  9. P. Couleaud, V. Morosini, C. Frochot, S. Richeter, L. Raehmaand, J. O. Durand, Silica-based nanoparticles for photodynamic therapy applications, Nanoscale, 2010, 2, 1083–1095.

    Article  CAS  PubMed  Google Scholar 

  10. B. Klajnert, M. Rozanek, M. Bryszewska, Dendrimers in photodynamic therapy, Curr. Med. Chem., 2012, 19, 49032–412.

  11. A. M. Bugaj, Targeted photodynamic therapy–a promising strategy of tumour treatment, Photochem. Photobiol. Sci., 2011, 10, 1097–1109.

    Article  CAS  PubMed  Google Scholar 

  12. D. S. Kohane, Microparticles and nanoparticles for drug delivery, Biotechnol. Bioeng., 2007, 96, 203–209.

    Article  CAS  PubMed  Google Scholar 

  13. E. M. Cohen, H. Ding, C. W. Kessinger, C. Khemtong, J. Gao, B. D. Sumer, Polymeric micelle nanoparticles for photodynamic treatment of head and neck cancer cells, Otolaryngol Head Neck Surg., 2010, 143, 109–115.

    Article  PubMed  Google Scholar 

  14. A. M. Master, M. E. Rodriguez, M. E. Kenney, N. L. Oleinick, A. S. Gupta, Delivery of the photosensitizer Pc4 in PEG-PCL micelles for in vitro PDT studies, J. Pharm. Sci., 2010, 99, 2386–2398.

    Article  CAS  PubMed  Google Scholar 

  15. S. J. Lee, K. Park, Y.-K. Oh, S.-H. Kwon, S. Her, I.-S. Kim, K. Choi, S. J. Lee, H. Kim, S. G. Lee, K. Kim, I. C. Kwon, Tumour specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumour-bearing mice, Biomaterials, 2009, 30, 2929–2939.

    Article  CAS  PubMed  Google Scholar 

  16. C. Kojima, Y. Toi, A. Harada, K. Kono, Preparation of poly(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy, Bioconjugate Chem., 2007, 18, 663–670.

    Article  CAS  Google Scholar 

  17. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, P. N. Prasad, Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy, J. Am. Chem. Soc., 2003, 125, 7860–7865.

    Article  CAS  PubMed  Google Scholar 

  18. Y. Cheng, A. C. Samia, J. D. Meyers, J. Panagopoulos, B. Frei, C. Burda, Highly efficient drug delivery with gold nanoparticles vectors for in vivo photodynamic therapy of cancer, J. Am. Chem. Soc., 2008, 130, 10634–10647.

    Google Scholar 

  19. M. J. Shieh, C. L. Peng, W. L. Chiang, C. H. Wang, C. Y. Hsu, S. J. Wang, P. S. Lai, Reduced skin photosensitivity with meta-tetra(hydroxyphenyl)chlorin-loaded micelles based on a poly(2-ethyl-2-oxazoline)-b-poly(d,l-lactide) diblock copolymer in vivo, Mol. Pharm., 2010, 7, 1244–1253.

    Article  CAS  PubMed  Google Scholar 

  20. W. J. Syu, H. P. Yu, C. Y. Hsu, Y. C. Rajan, Y. H. Hsu, Y. C. Chang, W. Y. Hsieh, C. H. Wang, P. S. Lai, Improved photodynamic cancer treatment by folate-conjugated polymeric micelles in a KB xenografted animal model, Small, 2012, 13, 2060–2069.

    Article  CAS  Google Scholar 

  21. C. Compagnin, L. Baù, M. Mognato, L. Celotti, G. Miotto, M. Arduini, F. Moret, C. Fede, F. Selvestrel, I. M. Rio Echevarria, F. Mancin, E. Reddi, The cellular uptake of meta-tetra(hydroxyphenyl)chlorin entrapped in organically modified silica nanoparticles is mediated by serum proteins, Nanotechnology, 2009, 20, 345101.

    Article  PubMed  CAS  Google Scholar 

  22. M. Rojnik, P. Kocbek, F. Moret, C. Compagnin, L. Celotti, M. J. Bovis, J. H. Woodhams, A. J. MacRobert, D. Scheglmann, W. Helfrich, M. J. Verkaik, E. Papini, E. Reddi, J. Kos, In vitro and in vivo characterization of temoporfin-loaded PEGylated PLGA nanoparticles for use in photodynamic therapy, Nanomedicine, 2012, 7, 663–667.

    Article  CAS  PubMed  Google Scholar 

  23. B. Pegaz, E. Debefve, J. P. Ballini, G. Wagnieres, S. Spaniol, V. Albrecht, D. V. Scheglmann, N. E. Nifantiev, H. Van der Bergh, Y. N. Konan-Kouakou, Photothrombic activity of m-THPC-loaded liposomal formulations: pre-clinical assessment on chick chorioallantonic membrane model, Eur. J. Pharm. Sci., 2006, 28, 134–140.

    Article  CAS  PubMed  Google Scholar 

  24. J. Buchholz, B. Kaser-Hotz, T. Khan, B. C. Rohrer, K. Melzer, R. A. Schwendener, M. Roos, H. Walt, Optimizing photodynamic therapy: in vivo pharmacokinetics of liposomal meta-(tetra-hydroxyphenyl)chlorin in feline squamous cell carcinoma, Clin. Cancer Res., 2005, 11, 7538–7544.

    Article  CAS  PubMed  Google Scholar 

  25. H. P. Lasalle, D. Dumas, S. Gräfe, M. A. D’Hallewin, F. Guillemin, L. Bezdetnaya, Correlation between in vivo pharmakinetics, intratumoral distribution and photodynamic efficiency of liposomal mTHPC, J. Controlled Release, 2009, 134, 118–124.

    Article  CAS  Google Scholar 

  26. J. Kuntsche, I. Freislebena, F. Steinigerb, A. Fahra, Temoporfin-loaded liposomes: physicochemical characterization, Eur. J. Pharm. Sci., 2010, 40, 305–315.

    Article  CAS  PubMed  Google Scholar 

  27. A. L. Klibanov, K. Maruyama, V. P. Torchilin, L. Huang, Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes, FEBS Lett., 1990, 268, 235–237.

    Article  CAS  PubMed  Google Scholar 

  28. S. N. Dos, C. Allen, A. M. Doppen, M. Anantha, K. A. Cox, R. C. Gallagher, G. Karlsson, K. Edwards, G. Kenner, L. Samuels, M. S. Webb, M. B. Bally, Influence of poly(ethyleneglycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding, Biochim. Biophys. Acta, 2007, 1768, 1367–1377.

    Article  CAS  Google Scholar 

  29. R. Tavano, D. Segat, E. Reddi, J. Kos, M. Rojnik, P. Kocbek, S. Iratni, D. Scheglmann, M. Colucci, I. M. Rio Echevarria, F. Selvestrel, F. Mancin, E. Papini, Procoagulant properties of bare and highly PEGylated vinyl-modified silica nanoparticles, Nanomedicine, 2010, 5, 881–896.

    Article  CAS  PubMed  Google Scholar 

  30. C. Compagnin, F. Moret, L. Celotti, G. Miotto, J. H. Woodhams, A. J. MacRobert, D. Scheglmann, S. Iratni, E. Reddi, Meta-tetra(hydroxyphenyl)chlorin-loaded liposomes sterically stabilised with poly(ethylene glycol) of different length and density: characterisation, in vitro cellular uptake and phototoxicity, Photochem. Photobiol. Sci., 2011, 10, 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  31. M. J. Bovis, J. H. Woodhams, M. Loizidou, D. Scheglmann, S. G. Bown, A. J. MacRobert, Improved in vivo delivery of m-THPC via pegylated liposomes for use in photodynamic therapy, J. Controlled Release, 2012, 30, 196–205.

    Article  CAS  Google Scholar 

  32. N. Solban, I. Rizvi, T. Hasan, Targeted photodynamic therapy, Lasers Surg. Med., 2006, 38, 522–531.

    Article  PubMed  Google Scholar 

  33. F. Danhier, O. Feron, V. Préat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery, J. Controlled Release, 2010, 148, 135–146.

    Article  CAS  Google Scholar 

  34. R. Schneider, F. Schmitt, C. Frochot, Y. Fort, N. Lourette, F. Guillemin, J.-F. Müller, M. Barberi-Heyob, Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy, Bioorg. Med. Chem., 2005, 13, 2799–2808.

    Article  CAS  PubMed  Google Scholar 

  35. J. Gravier, R. Schneider, C. Frochot, T. Bastogne, F. Schmitt, J. Didelon, F. Guillemin, M. Barberi-Heyob, Improvement of meta-tetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. Synthesis and in vivo delivery studies, J. Med. Chem., 2008, 51, 3867–3877.

    Article  CAS  PubMed  Google Scholar 

  36. C. Stefflova, H. Li, J. Chen, G. Zheng, Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent, Bioconjugate Chem., 2007, 18, 379–388.

    Article  CAS  Google Scholar 

  37. M. M. Qualls, D. H. Thompson, Chloroaluminum phthalocyanine tetrasulfonate delivered via acid-labile diplasmenylcholine-folate liposome: intracellular localisation and synergistic phototoxicity, Int. J. Cancer, 2001, 93, 384–392.

    Article  CAS  PubMed  Google Scholar 

  38. S.-J. Yang, F.-H. Lin, K.-C. Tsai, M.-F. Wei, H.-M. Tsai, J.-M. Wong, M.-J. Shieh, Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells, Bioconjugate Chem., 2010, 21, 679–689.

    Article  CAS  Google Scholar 

  39. V. Morosini, T. Bastogne, C. Frochot, R. Schneider, A. François, F. Guillemin, M. Barberi-Heyob, Quantum dot-folic acid conjugates as potential photosensitizers in photodynamic therapy of cancer, Photochem. Photobiol. Sci., 2011, 10, 842–851.

    Article  CAS  PubMed  Google Scholar 

  40. V. Reshetov, D. Kachatkou, T. Shmigol, V. Zorin, M. D’Hallewin, F. Guillemin, L. Bezdetnaya, Redistribution of meta-tetra(hydroxyphenyl)chlorin (m-THPC) from conventional and PEGylated liposomes to biological substrates, Photochem. Photobiol. Sci., 2011, 10, 911–919.

    Article  CAS  PubMed  Google Scholar 

  41. V. Reshetov, V. Zorin, A. Siupa, M. D’Hallewin, F. Giullemin, L. Bezdetnaya, Interaction of liposomal formulations of meta-tetra(hydroxyphenyl)chlorin (temoporfin) with serum proteins: protein binding and liposome destruction, Photochem. Photobiol., 2012, 88, 1256–1264.

    Article  CAS  PubMed  Google Scholar 

  42. S. Sasnouski, V. Zorin, I. Khludeyev, M. A. D’Hallewin, F. Guillemin, L. Bezdetnaya, Investigation of Foscan® interactions with plasma proteins, Biochim. Biophys. Acta, 2005, 1725, 394–402.

    Article  CAS  PubMed  Google Scholar 

  43. N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, C. P. Leamon, Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay, Anal. Biochem., 2005, 338, 284–293.

    Article  CAS  PubMed  Google Scholar 

  44. R. J. Lee, P. S. Low, Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis, J. Biol. Chem., 1994, 269, 3198–3204.

    Article  CAS  PubMed  Google Scholar 

  45. A. Yamada, Y. Taniguchi, T. Honda, Y. Hattori, Y. Maitani, Design of folate-linked liposomal doxorubicin to its antitumor effect in mice, Clin. Cancer Res., 2008, 14, 8161–8168.

    Article  CAS  PubMed  Google Scholar 

  46. A. Gabizon, A. T. Horowitz, D. Goren, D. Tzemach, F. Mandelbaum-Shavit, M. M. Qazen, S. Zalipsky, Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies, Bioconjugate Chem., 1999, 10, 289–298.

    Article  CAS  Google Scholar 

  47. K. Kawano, Y. Maitani, Effects of polyethylene glycol spacer length and ligand density on folate receptor targeting of liposomal doxorubicin in vitro, J. Drug Deliv., 2011, 160967.

    Google Scholar 

  48. A. R. Hilgenbrink, P. S. Low, Folate receptor-mediated drug targeting: from therapeutics to diagnostics, J. Pharm. Sci., 2005, 94, 2135–2146.

    Article  CAS  PubMed  Google Scholar 

  49. M. García-Díaz, S. Nonell, A. Villanueva, J. C. Stockert, M. Cañete, A. Casadò, M. Mora, M. L. Sagristá, Do folate-receptor targeted liposomal photosensitizers enhance photodynamic therapy selectivity?, Biochim. Biophys. Acta, 2011, 1808, 1063–1071.

    Article  PubMed  CAS  Google Scholar 

  50. H. Shmeeda, Y. Amitay, J. Gorin, D. Tzemach, L. Mak, J. Ogorka, S. Kumar, J. A. Zhang, A. Gabizon, Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells, J. Controlled Release, 2010, 146, 76–83.

    Article  CAS  Google Scholar 

  51. K. Watanabe, M. Kaneko, Y. Maitani, Functional coating of liposomes using a folate-polymer conjugate to target folate receptors, Int. J. Nanomed., 2012, 7, 3679–3688.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Reddi.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c3pp25384h

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moret, F., Scheglmann, D. & Reddi, E. Folate-targeted PEGylated liposomes improve the selectivity of PDT with meta-tetra(hydroxyphenyl)-chlorin (m-THPC). Photochem Photobiol Sci 12, 823–834 (2013). https://doi.org/10.1039/c3pp25384h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp25384h

Navigation