Skip to main content
Log in

The effect of hydration on the UV absorption coefficient of intact melanosomes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The physical properties of melanosomes have been shown to depend on water content. Herein, the ultraviolet absorption coefficient at λ = 244 nm for intact bovine choroidal melanosomes is determined from photoemission electron microscopy images recorded as a function of vacuum exposure. The dehydration of the melanosome under ultra-high vacuum manifests itself by a decrease in the absorption coefficient to about 60% of its initial value, and a concomitant increase in its image brightness. This change in the absorption of the melanosome is consistent with the influence of solvent polarity on the UV absorption coefficient of model systems for the pigment eumelanin, the predominant UV absorber contained in the choroid melanosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. D. Simon, D. N. Peles, K. Wakamatsu, S Ito, Current Challenges in Understanding Melanogenesis: Bridging Chemistry, Biological Control, Morphology, and Function, Pigm. Cell Melanoma Res., 2009, 22, 563–579.

    Article  CAS  Google Scholar 

  2. G. E. Costin, V. J. Hearing, Human skin pigmentation: melanocytes modulate skin color in response to stress, FASEB J., 2007, 21, 976–994.

    Article  CAS  Google Scholar 

  3. S. L. Jacques, R. D. R. D. Glickman, J. A. J. A. Schwartz, Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium, Proc. SPIE–Int. Soc. Opt. Eng., 1996, 2681, 468–476.

    CAS  Google Scholar 

  4. R. D. Glockman, S. L. Jacques, R. T. Hall, N. Kumar, Revisiting the internal absorption coefficient of the retinal pigment epithelium melanosome, Proc. SPIE–Int. Soc. Opt. Eng., 2001, 4257, 134–141.

    Google Scholar 

  5. D. H. Sliney, W. A. Palmisano, The evaluation of laser hazards., AIHAJ, 1968, 29, 425.

    Article  CAS  Google Scholar 

  6. D. N. Peles, J. D. Simon, Direct Measurement of the Ultraviolet Absorption Coefficient of Single Retinal Melanosomes, Photochem. Photobiol., 2010, 86, 279–281.

    Article  CAS  Google Scholar 

  7. D. N. Peles, E. Lin, K. Wakamatsu, S. Ito, J. D. Simon, Ultraviolet Absorption Coefficients of Melanosomes Containing Eumelanin As Related to the Relative Content of DHI and DHICA, J. Phys. Chem. Lett., 2010, 1, 2391–2395.

    Article  CAS  Google Scholar 

  8. D. N. Peles, J. D. Simon, The Ultraviolet Absorption of Human Iridal Melanosomes Decreases with Increasing Pheomelanin Content, J. Phys. Chem. B, 2010, 114, 9677–9683.

    Article  CAS  Google Scholar 

  9. K. Wakamatsu, S. Ito, Advanced chemical methods in melanin determination, Pigm. Cell Res., 2002, 15, 174–183.

    Article  CAS  Google Scholar 

  10. J. D. Simon, L. Hong, D. N. Peles, Insights into Melanosomes and Melanin from some Interesting Spatial and Temporal Properties, J. Phys. Chem. B, 2008, 112, 13201–13217.

    Article  CAS  Google Scholar 

  11. Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. B. Adhyaru, C.-Y. Cheng, C. R. Bowers, J. D. Simon, Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris, and Choroid of Newborn and Mature Bovine Eyes, Photochem. Photobiol., 2005, 81, 510–516.

    Article  CAS  Google Scholar 

  12. L. Hong, J. D. Simon, Physical and Chemical Characterization of Iris and Choroid Melanosomes Isolated from Newborn and Mature Cows, Photochem. Photobiol., 2005, 81, 517–523.

    Article  CAS  Google Scholar 

  13. E. Bucher, S. Schulz, M. C. Luxsteiner, P. Munz, U. Gubler, F. Greuter, Work function and barrier heights of transition-metal silicides, Appl. Phys. A: Solids Surf., 1986, 40, 71–77.

    Article  Google Scholar 

  14. A. Samokhvalov, L. Hong, Y. Liu, J. Garguilo, R. J. Nemanich, G. S. Edwards, J. D. Simon, Oxidation Potentials of Human Eumelanosomes and Pheomelanosomes, Photochem. Photobiol., 2005, 81, 145–148.

    Article  CAS  Google Scholar 

  15. H. P. Marques, A. R. Canario, A. M. C. Moutinho, O. M. N. D. Teodoro, Tracking hydroxyl adsorption on TiO2 (110) through secondary emission changes, Appl. Surf. Sci., 2009, 255, 7389–7393.

    Article  CAS  Google Scholar 

  16. G. Rocker, W. Gopal, Chemisorption of H2 and CO on stoichiometric and defective TiO2(110), Surf. Sci., 1986, 175, L675–L680.

    Article  CAS  Google Scholar 

  17. M. G. Bridelli, P. R. Crippa, Infrared and water sorption studies of the hydration structure and mechanism in natural and synthetic melanin, J. Phys. Chem. B, 2010, 114, 9381–9390.

    Article  CAS  Google Scholar 

  18. M. M. Jastrzebska, H. Isotalo, J. Paloheimo, H. Stubb, Electrical conductivity of synthetic DOPA-melanin polymer for different hydration states and temperatures, J. Biomater. Sci., Polym. Ed., 1996, 7, 577–586.

    Article  Google Scholar 

  19. A. B. Mostert, K. J. P. Davy, J. L. Ruggles, B. J. Powell, I. R. Gentle, P. Meredith, Gaseous Adsorption in Melanins: Hydrophilic Biomacromolecules with High Electrical Conductivities, Langmuir, 2010, 26, 412–416.

    Article  CAS  Google Scholar 

  20. S. P. Nighswander-Rempel, I. B. Mahadevan, P. V. Bernhardt, J. Butcher, P. Meredith, Solvochromic effects in model eumelanin compounds, Photochem. Photobiol., 2008, 84, 620–626.

    Article  CAS  Google Scholar 

  21. A. Pezzella, A. Iadonisi, S. Valerio, L. Panzella, A. Napolitano, M. Adinolfi, M. d’Ischia, Disentangling Eumelanin “Black Chromophore”: Visible Absorption Changes As Signatures of Oxidation State- and Aggregation-Dependent Dynamic Interactions in a Model Water-Soluble 5,6-Dihydroxyindole Polymer, J. Am. Chem. Soc., 2009, 131(42), 15270–15275.

    Article  CAS  Google Scholar 

  22. B. C. Garrett, D. A. Dixon, D. M. Camaioni, D. M. Chipman, M. A. Johnson, C. D. Jonah, G. A. Kimmel, J. H. Miller, T. N. Rescigno, P. J. Rossky, S. S. Xantheas, S. D. Colson, A. H. Laufer, D. Ray, P. F. Barbara, D. M. Bartels, K. H. Becker, K. H. Bowen, Jr., S. E. Bradforth, I. Carmichael, J. V. Coe, L. R. Corrales, J. P. Cowin, M. Dupuis, K. B. Eisenthal, J. A. Franz, M. S. Gutowski, K. D. Jordan, B. D. Kay, J. A. LaVerne, S. V. Lymar, T. E. Madey, C. W. McCurdy, X D. Meisel, S. Mukamel, A. R. Nilsson, T. M. Orlando, N. G. Petrik, S. M. Pimblott, J. R. Rustad, G. K. Schenter, S. J. Singer, A. Tokmakoff, L.-S. Wang, C. Wittig, T. S. Zwier, Role of Water in Electron-Initiated Processes and Radical Chemistry: Issues and Scientific Advances, Chem. Rev., 2005, 105, 355–389.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, E., Peles, D.N. & Simon, J.D. The effect of hydration on the UV absorption coefficient of intact melanosomes. Photochem Photobiol Sci 11, 687–691 (2012). https://doi.org/10.1039/c2pp05233d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05233d

Navigation