Issue 18, 2012

Alumoxane/ferroxane nanoparticles for the removal of viral pathogens: the importance of surface functionality to nanoparticle activity

Abstract

A bi-functional nano-composite coating has been created on a porous Nomex® fabric support as a trap for aspirated virus contaminated water. Nomex® fabric was successively dip-coated in solutions containing cysteic acid functionalized alumina (alumoxane) nanoparticles and cysteic acid functionalized iron oxide (ferroxane) nanoparticles to form a nanoparticle coated Nomex® (NPN) fabric. From SEM and EDX the nanoparticle coating of the Nomex® fibers is uniform, continuous, and conformal. The NPN was used as a filter for aspirated bacteriophage MS2 viruses using end-on filtration. All measurements were repeated to give statistical reliability. The NPN fabrics show a large decrease as compared to Nomex® alone or alumoxane coated Nomex®. An increase in the ferroxane content results in an equivalent increase in virus retention. This suggests that it is the ferroxane that has an active role in deactivating and/or binding the virus. Heating the NPN to 160 °C results in the loss of cysteic acid functional groups (without loss of the iron nanoparticle's core structure) and the resulting fabric behaves similar to that of untreated Nomex®, showing that the surface functionalization of the nanoparticles is vital for the surface collapse of aspirated water droplets and the absorption and immobilization of the MS2 viruses. Thus, for virus immobilization, it is not sufficient to have iron oxide nanoparticles per se, but the surface functionality of a nanoparticle is vitally important in ensuring efficacy.

Graphical abstract: Alumoxane/ferroxane nanoparticles for the removal of viral pathogens: the importance of surface functionality to nanoparticle activity

Supplementary files

Article information

Article type
Paper
Submitted
06 May 2012
Accepted
04 Jul 2012
First published
10 Jul 2012

Nanoscale, 2012,4, 5627-5632

Alumoxane/ferroxane nanoparticles for the removal of viral pathogens: the importance of surface functionality to nanoparticle activity

S. J. Maguire-Boyle, M. V. Liga, Q. Li and A. R. Barron, Nanoscale, 2012, 4, 5627 DOI: 10.1039/C2NR31117H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements