Issue 36, 2012

Tailored interfaces for self-patterning organic thin-film transistors

Abstract

Patterning organic thin-film transistors (OTFTs) is critical in achieving high electronic performance and low power consumption. We report on a high-yield, low-complexity patterning method based on exploiting the strong tendency of halogen-substituted organic semiconductors to crystallize along chemically tailored interfaces. We demonstrate that the organic semiconductor molecules self-align on the contacts, when the halogenhalogen interaction is allowed by the chemical structures and conformations of the self-assembled monolayer and organic semiconductor. The ordered films exhibit high mobilities and constrain the current paths. The regions surrounding the devices, where the interaction is inhibited, consist of randomly oriented molecules, exhibiting high-resistivity and electrically insulating neighboring devices. To identify the role of F–F interactions in the development of crystalline order, we investigate OTFTs fabricated on mono-fluorinated benzene thiol treated contacts, which allows us to isolate the interactions between the F originating from the organic semiconductor and the F in each position on the benzene ring of the thiol, and to selectively study the role of each interaction. Combining the results obtained from quantitative grazing incidence X-ray diffraction and Kelvin probe measurements, we show that the surface treatments induce structural changes in the films, but also alter the injection picture as a result of work function shifts that they introduce. We show that both effects yield variations in the field-effect transistor characteristics, and we are able to tune the field-effect mobility more than two orders of magnitude in the same material.

Graphical abstract: Tailored interfaces for self-patterning organic thin-film transistors

Supplementary files

Article information

Article type
Paper
Submitted
19 Jun 2012
Accepted
27 Jul 2012
First published
02 Aug 2012

J. Mater. Chem., 2012,22, 19047-19053

Tailored interfaces for self-patterning organic thin-film transistors

J. W. Ward, M. A. Loth, R. J. Kline, M. Coll, C. Ocal, J. E. Anthony and O. D. Jurchescu, J. Mater. Chem., 2012, 22, 19047 DOI: 10.1039/C2JM33974A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements