Issue 32, 2012

Destabilization of the 6H-SrIrO3 polymorph through partial substitution of zinc and lithium

Abstract

We report on the destabilization of the 6H-SrIrO3 polymorph through partial substitutions of zinc and lithium for iridium to form perovskites. The perovskites crystallize in the orthorhombic space group Pbnm: SrIr1−xZnxO3 is found for 0.25 ≤ x ≤ 0.33, while SrIr1−xLixO3 is found only for x = 0.25. The Zn and Li ions are randomly distributed in the B-site lattice. Analysis shows that the perovskite stabilization is not driven by changes in average ionic size but rather is due to destabilization of the face-sharing octahedra that are present in 6H-type SrIrO3. Magnetic susceptibility measurements show Curie–Weiss behavior, with relatively large temperature independent contributions, and that the iridium atoms have low effective moments, 0.52 to 1.08 μB per Ir. The resistivity of SrIr0.67Zn0.33O3, characterized by Mott variable range hopping type semiconducting behavior, indicates that substituted Zn ions introduce significant disorder into the system. SrIr0.75Li0.25O3 has a significant linear contribution to the specific heat at low temperatures.

Graphical abstract: Destabilization of the 6H-SrIrO3 polymorph through partial substitution of zinc and lithium

Article information

Article type
Paper
Submitted
23 Apr 2012
Accepted
24 Jun 2012
First published
10 Jul 2012

J. Mater. Chem., 2012,22, 16431-16436

Destabilization of the 6H-SrIrO3 polymorph through partial substitution of zinc and lithium

M. Bremholm, C. K. Yim, D. Hirai, E. Climent-Pascual, Q. Xu, H. W. Zandbergen, M. N. Ali and R. J. Cava, J. Mater. Chem., 2012, 22, 16431 DOI: 10.1039/C2JM32558F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements