Skip to main content

Advertisement

Log in

Ozone depletion and climate change: impacts on UV radiation

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The Montreal Protocol is working, but it will take several decades for ozone to return to 1980 levels. The atmospheric concentrations of ozone depleting substances are decreasing, and ozone column amounts are no longer decreasing. Mid-latitude ozone is expected to return to 1980 levels before mid-century, slightly earlier than predicted previously. However, the recovery rate will be slower at high latitudes. Springtime ozone depletion is expected to continue to occur at polar latitudes, especially in Antarctica, in the next few decades. Because of the success of the Protocol, increases in UV-B radiation have been small outside regions affected by the Antarctic ozone hole, and have been difficult to detect. There is a large variability in UV-B radiation due to factors other than ozone, such as clouds and aerosols. There are few long-term measurements available to confirm the increases that would have occurred as a result of ozone depletion. At mid-latitudes UV-B irradiances are currently only slightly greater than in 1980 (increases less than ~5%), but increases have been substantial at high and polar latitudes where ozone depletion has been larger. Without the Montreal Protocol, peak values of sunburning UV radiation could have been tripled by 2065 at mid-northern latitudes. This would have had serious consequences for the environment and for human health. There are strong interactions between ozone depletion and changes in climate induced by increasing greenhouse gases (GHGs). Ozone depletion affects climate, and climate change affects ozone. The successful implementation of the Montreal Protocol has had a marked effect on climate change. The calculated reduction in radiative forcing due to the phase-out of chlorofluorocarbons (CFCs) far exceeds that from the measures taken under the Kyoto protocol for the reduction of GHGs. Thus the phase-out of CFCs is currently tending to counteract the increases in surface temperature due to increased GHGs. The amount of stratospheric ozone can also be affected by the increases in the concentration of GHGs, which lead to decreased temperatures in the stratosphere and accelerated circulation patterns. These changes tend to decrease total ozone in the tropics and increase total ozone at mid and high latitudes. Changes in circulation induced by changes in ozone can also affect patterns of surface wind and rainfall. The projected changes in ozone and clouds may lead to large decreases in UV at high latitudes, where UV is already low; and to small increases at low latitudes, where it is already high. This could have important implications for health and ecosystems. Compared to 1980, UV-B irradiance towards the end of the 21st century is projected to be lower at mid to high latitudes by between 5 and 20% respectively, and higher by 2-3% in the low latitudes. However, these projections must be treated with caution because they also depend strongly on changes in cloud cover, air pollutants, and aerosols, all of which are influenced by climate change, and their future is uncertain. Strong interactions between ozone depletion and climate change and uncertainties in the measurements and models limit our confidence in predicting the future UV radiation. It is therefore important to improve our understanding of the processes involved, and to continue monitoring ozone and surface UV spectral irradiances both from the surface and from satellites so we can respond to unexpected changes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Norval, R. M. Lucas, A. P. Cullen, F. R. de Gruijl, J. Longstreth, Y. Takaizawa and J. C. Van Der Leun, The human health effects of ozone depletion and interactions with climate change, Photochem. Photobiol. Sci., 2011, 10, DOI: 10.1039/c0pp90044c.

  2. UNEP, Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2007, Photochem. Photobiol. Sci., 2008, 7, 15–27.

    Article  Google Scholar 

  3. UNEP, Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2008, Photochem. Photobiol. Sci., 2009, 8, 13–22.

    Article  Google Scholar 

  4. UNEP, Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2009, Photochem. Photobiol. Sci., 2010, 9, 275–294.

    Article  CAS  Google Scholar 

  5. UNEP, Environmental effects of ozone depletion and its interactions with climate change: 2006 assessment, Photochem. Photobiol. Sci., 2007, 6, 201–332.

    Article  Google Scholar 

  6. WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project, Report No. 52, Geneva, 2010, in press.

    Google Scholar 

  7. WMO, Scientific Assessment of Ozone Depletion: 2006, World Meteorological Organisation Report No. 50, Geneva, 2007, http://www.wmo.int/pages/prog/arep/gaw/ozone_2006/ozone_asst_report.html.

    Google Scholar 

  8. J. Rozema, B. van Geel, L. O. Björn, J. Lean and S. Madronich, Toward solving the UV puzzle, Science, 2002, 296, 1621–1622.

    Article  CAS  PubMed  Google Scholar 

  9. I. Cnossen, J. Sanz-Forcada, F. Favata, O. Witasse, T. Zegers and N. F. Arnold, Habitat of early life: Solar X-ray and UV radiation at Earth’s surface 4-3.5 billion years ago, J. Geophys. Res., 2007, 112, E02008.

    Article  CAS  Google Scholar 

  10. M. B. J. Harfoot, D. J. Beerling, B. H. Lomax and J. A. Pyle, A two-dimensional atmospheric chemistry modeling investigation of Earth’s Phanerozoic O3 and near-surface ultraviolet radiation history, J. Geophys. Res., 2007, 112, D07308.

    Article  CAS  Google Scholar 

  11. L. O. Björn and R. L. McKenzie, Attempts to probe the ozone layer and the UV-B levels of the past, Ambio, 2007, 36, 366–371.

    Article  PubMed  Google Scholar 

  12. U. Feister, J. Junk, M. Woldt, A. Bais, A. Helbig, M. Janouch, W. Josefsson, A. Kazantzidis, A. Lindfors, P. N. den Outer and H. Slaper, Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data, Atmos. Chem. Phys, 2008, 8, 3107–3118.

    Article  CAS  Google Scholar 

  13. S. Madronich, Analytic formula for the clear-sky UV index, Photochem. Photobiol., 2007, 83, 1537–1538.

    Article  CAS  PubMed  Google Scholar 

  14. S. Brönnimann, C. Vogler, J. Staehelin, R. Stolarski and G. Hansen, Total ozone observations during the past 80 years, in Climate Variability and Extremes during the Past 100 Years ed. S. Brönnimann, J. Luterbacher, T. Ewen, H. F. Diaz, R. S. Stolarski and U. Neu, Springer, Netherlands, 2008, pp. 129–140.

    Chapter  Google Scholar 

  15. J. Herman, Global increase in UV irradiance during the past 30 years (1979 to 2008) estimated from satellite data, J. Geophys. Res., 2010, 115, D04203.

    Google Scholar 

  16. V. Fioletov, M. Kimlin, N. Krotkov, B. McArthur, J. Kerr, D. Wardle, J. Herman, R. Meltzer, T. Mathews and J. Kaurola, UV index climatology over North America from ground-based and satellite estimates, J. Geophys. Res., 2004, 109, D22308.

    Article  Google Scholar 

  17. N. Chubarova, Y. I. Nezval, J. Verdebout, N. Krotkov and J. Herman, Long-term UV irradiance changes over Moscow and comparisons with UV estimates from TOMS and METEOSAT, in Ultraviolet Ground- and Space-based Measurements, Models, and Effects (ed.: G. Bernhard, J. R. Slusser, J. R. Herman and W. Gao), San Diego, 2005, pp. 63–73.

    Google Scholar 

  18. D. H. W. Peters, A. Gabriel and G. Entzian, Longitude-dependent decadal ozone changes and ozone trends in boreal winter months during 1960-2000, Ann. Geophys., 2008, 26, 1275–1286.

    Article  CAS  Google Scholar 

  19. J. Verdebout, A method to generate surface UV radiation maps over Europe using GOME, Meteosat, and ancillary geophysical data, J. Geophys. Res., 2000, 105, 5049–5058.

    Article  CAS  Google Scholar 

  20. H. Gadhavi, R. T. Pinker and I. Laszlo, Estimates of surface ultraviolet radiation over north America using Geostationary Operational Environmental Satellites observations, J. Geophys. Res., 2008, 113, D21205.

    Article  CAS  Google Scholar 

  21. D. S. Berger and F. Urbach, A climatology of sunburning ultraviolet radiation, Photochem. Photobiol, 1982, 35, 187–192.

    Article  CAS  PubMed  Google Scholar 

  22. G. Bernhard, C. R. Booth and J. C. Ehramjian, Climatology of ultraviolet radiation at high latitudes derived from measurements of the national Science Foundation’s spectral irradiance monitoring network, in UV Radiation in Global Change: Measurements, Modeling and Effects on Ecosystems ed.: W. Gao, D. L. Schmoldt and J. R. Slusser, Tsinghua University Press, Beijing and Springer, New York, 2010, p. 544.

    Google Scholar 

  23. G. Bernhard, C. R. Booth and J. C. Ehramjian, Comparison of UV irradiance measurements at Summit, Greenland; Barrow, Alaska; and South Pole, Antarctica, Atmos. Chem. Phys., 2008, 8, 4799–4810.

    Article  CAS  Google Scholar 

  24. J. A. Hicke, J. Slusser, K. Lantz and F. G. Pascual, Trends and interannual variability in surface UVB radiation over 8 to 11 years observed across the United States, J. Geophys. Res., 2008, 113, D21302.

    Article  CAS  Google Scholar 

  25. J. L. Borkowski, Modelling of UV radiation variations at different time scales, Ann. Geophys., 2008, 26, 441–446.

    Article  CAS  Google Scholar 

  26. P. den Outer, H. Slaper, J. Kaurola, A. Lindfors, A. Kazantzidis, A. Bais, U. Feister, J. Junk, M. Janouch and W. Josefsson, Reconstructing of erythemal ultraviolet radiation levels in Europe for the past 4 decades, J. Geophys. Res, 2010, 115, D10102.

    Article  CAS  Google Scholar 

  27. J. Lee-Taylor and S. Madronich, Climatology of UV-A, UV-B, and erythemal radiation at the Earth’s surface, 1979-2000, NCAR Report No., Boulder, July 2007, p. 52, http://cprm.acd.ucar.edu/Models/TUV/.

    Google Scholar 

  28. B. H. Lomax, W. T. Fraser, M. A. Sephton, T. V Callaghan, S. Self, M. Harfoot, J. A. Pyle, C. H. Wellman and D. J. Beerling, Plant spore walls as a record of long-term changes in ultraviolet-B radiation, Nat. Geosci., 2008, 1, 592–596.

    Article  CAS  Google Scholar 

  29. P. Blokker, P. Boelen, R. A. Broekman and J. Rozema, The occurrence of p-coumaric acid and ferulic acid in fossil plant materials and their use as UV-proxy, Plant Ecol, 2006, 41, 197–208.

    Google Scholar 

  30. J. Rozema, P. Blokker and M. A. Mayoral, Fuertes and R. Broekman, UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: Evaluation of a proxy for solar UV radiation, Photochem. Photobiol. Sci., 2009, 8, 1233–1243.

    Article  CAS  PubMed  Google Scholar 

  31. S. Otero, E. Núñez-Olivera, J. Martínez-Abaigar, R. Tomás and S. Huttunen, Retrospective bioindication of stratospheric ozone and ultraviolet radiation using hydroxycinnamic acid derivatives of herbarium samples of an aquatic liverwort, Environ. Pollut., 2009, 157, 2335–2344.

    Article  CAS  PubMed  Google Scholar 

  32. K. G. Ryan, A. Burne and R. D. Seppelt, Historical ozone concentrations and flavonoid levels in herbarium specimens of the Antarctic moss Bryumargenteum, Global Change Biol., 2009, 15, 1694–1702.

    Article  Google Scholar 

  33. N. Munakata, S. Kazadzis, D. Bolseé, N. Schuch, T. Koskela, A. Karpetchko, C. Meleti, C. Casiccia, M. B. d. Rosa, T. Saida, C. Nishigori, K. Ogata, K. Imafuku, C.-M. Liu, S. Lestari, M. Kanoko, S. Cornain, K. Mulyadi and K. Hieda, Variations and trends of biologically effective doses of solar ultraviolet radiation in Asia, Europe and South America from 1999 to 2007, Photochem. Photobiol. Sri., 2009, 8, 1117–1124.

    Article  CAS  Google Scholar 

  34. A. Tanskanen, A. Lindfors, A. Maatta, N. Krotkov, J. Herman, J. Kaurola, T. Koskela, K. Lakkala, V. Filoletov, G. Bernhard, R. L. McKenzie, Y. Kondo, M. O’Neill, H. Slaper, P. N. den Outer, A. Bais and J. Tamminen, Validation of the daily erythemal UV doses from Ozone Monitoring Instrument with ground-based UV measurement data, J. Geophys. Res., 2007, 112, D24S44.

    Article  CAS  Google Scholar 

  35. S. Kazadzis, A. Bais, D. Balis, N. Kouremeti, M. Zempila, A. Arola, E. Giannakaki, A. Kazantzidis and V. Amiridis, Spatial and temporal UV irradiance and aerosol variability within the area of an OMI satellite pixel, Atmos. Chem. Phys., 2009, 9, 4593–4601.

    Article  CAS  Google Scholar 

  36. R. L. McKenzie, C. Weinreis, P. V. Johnston, B. Liley, H. Shiona, M. Kotkamp, D. Smale, N. Takegawa and Y. Kondo, Effects of urban pollution on UV spectral irradiances, Atmos. Chem. Phys., 2008, 8, 5683–5697.

    Article  CAS  Google Scholar 

  37. Y. Sola, J. Lorente, E. Campmany, X. d. Cabo, J. Bech, A. Redano, J. A. Martinez-Lozano, M. P. Utrillas, L. Alados-Arboledas, F. J. Olmo, J. P. Diaz, F. J. Exposito, V. Cachorro, M. Sorribas, A. Labajo, J. M. Vilaplana, A. M. Silva and J. Badosa, Altitude effect in UV radiation during the Evaluation of the Effects of Elevation and Aerosols on the Ultraviolet Radiation 2002 (VELETA-2002) field campaign, J. Geophys. Res., 2008, 113, D23202.

    Article  CAS  Google Scholar 

  38. N. Y. Chubarova, I. K. Larin, V. V. Lebedev, V. S. Partola, Y. A. Lezina and A. N. Rublev, Experimental and Model Study of Changes in Spectral Solar Irradiance in the Atmosphere of Large City due to Tropospheric NO2 Content, in Current Problems in Atmospheric Radiation, International Radiation Symposium, Vol. 1 (ed.: T. Nakajima and M. A. Yamasoe), American Institute of Physics, Iguazu, Brazil, 2008, pp. 459–462.

    Google Scholar 

  39. A. S. Panicker, G. Pandithurai, T. Takamura and R. T. Pinker, Aerosol effects in the UV-B spectral region over Pune, an urban site in India, Geophys. Res. Lett., 2009, 36, L10802.

    Article  Google Scholar 

  40. S. Kazadzis, A. Bais, A. Arola, N. Krotkov, N. Kouremeti and C. Meleti, Ozone Monitoring Instrument spectral UV irradiance products: comparison with ground based measurements at an urban environment, Atmos. Chem. Phys., 2009, 9, 585–594.

    Article  CAS  Google Scholar 

  41. I. Ialongo, G. R. Casale and A. M. Siani, Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station, Atmos. Chem. Phys., 2008, 8, 3283–3289.

    Article  CAS  Google Scholar 

  42. A. Arola, S. Kazadzis, A. Lindfors, N. Krotkov, J. Kujanpää, J. Tamminen, A. Bais, A. di Sarra, J. M. Villaplana, C. Brogniez, A. M. Siani, M. Janouch, P. Weihs, A. Webb, T. Koskela, N. Kouremeti, D. Meloni, V. Buchard, F. Auriol, I. Ialongo, M. Staneck, S. Simic, A. Smedley and S. Kinne, A new approach to correct for absorbing aerosols in OMI UV, Geophys. Res. Lett., 2009, 36, L22805.

    Article  Google Scholar 

  43. J. B. Liley, New Zealand dimming and brightening, J. Geophys. Res., 2009, 114, D00D10.

    Google Scholar 

  44. M. Wild, Global dimming and brightening: A review, J. Geophys. Res., 2009, 114, D00D16.

    Google Scholar 

  45. P. Alpert and P. Kishcha, Quantification of the effect of urbanization on solar dimming, Geophys. Res. Lett, 2008, 35, L08801.

    Article  Google Scholar 

  46. C. Zerefos, K. Eleftheratos, C. Meleti, S. Kazadtzis, A. Romanou, C. Ichoku, G. Tselioudis and A. Bais, Solar dimming and brightening over Thessaloniki, Greece, and Beijing, China, Tellus, 2009, 69, 657–665.

    Article  CAS  Google Scholar 

  47. H. Ohvril, H. Teral, L. Neiman, M. Kannel, M. Uustare, M. Tee, V. Russak, O. Okulov, A. Joeveer, A. Kallis, T. Ohvril, E. I. Terez, G. A. Terez, G. K. Gushchin, G. M. Abakumova, E. V. Gorbarenko, A. V. Tsvetkov and N. Laulainen, Global dimming and brightening versus atmospheric column transparency, Europe, 1906-2007, J. Geophys. Res, 2009, 114, D00D12.

    Google Scholar 

  48. B. P. Kumari, A. L. Londhe, S. Daniel and D. B. Jadhav, Observational evidence of solar dimming: Offsetting surface warming over India, Geophys. Res. Lett, 2007, 34, L21810.

    Article  Google Scholar 

  49. J. R. Norris and M. Wild, Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar ‘dimming,’ and solar brightening, J. Geophys. Res., 2007, 112, D08214.

    Google Scholar 

  50. K. Tsigaridis, M. Krol, F. J. Dentener, Y. Balkanski, J. Lathière, S. Metzger, D. A. Hauglustaine and M. Kanakidou, Change in global aerosol composition since preindustrial times, Atmos. Chem. Phys., 2006, 6, 5143–5162.

    Article  CAS  Google Scholar 

  51. M. M. Kvalevag, G. Myhre and C. E. Lund, Myhre, Extensive reduction of surface UV radiation since 1750 in world’s populated regions, Atmos. Chem. Phys. Discuss., 2009, 9, 10457–10486.

    Google Scholar 

  52. S. Kazadzis, A. F. Bais, V. Amiridis, D. Balis, C. Meleti, N. Kouremeti, C. S. Zerefos, S. Rapsomanikis, M. Petrakakis, A. Kelesis, P. Tzoumaka and K. Kelektsoglou, Nine years of UV aerosol optical depth measurements at Thessaloniki, Greece, Atmos. Chem. Phys., 2007, 7, 2091–2101.

    Article  CAS  Google Scholar 

  53. C. Meleti, A. Bais, S. Kazadtzis, N. Kouremeti, K. Garane and C. Zerefos, Factors affecting solar ultraviolet irradiance measured since 1990 at Thessaloniki, Greece, Int. J. Remote Sens., 2009, 30, 4167–4179.

    Article  Google Scholar 

  54. N. Chubarova, UV variability in Moscow according to long-term UV measurements and reconstruction model, Atmos. Chem. Phys., 2008, 8, 3025–3031.

    Article  CAS  Google Scholar 

  55. D. J. Hofmann and S. A. Montzka, Recovery of the ozone layer: the ozone depleting gas index, EOS, Trans. Am. Geophys. Union, 2009, 90, 1–2.

    Article  Google Scholar 

  56. G. Seckmeyer, M. Glandorf, C. Wichers, R. L. McKenzie, D. Henriques, F. Carvalho, A. R. Webb, A. M. Siani, A. Bais, B. Kjeldstad, C. Brogniez, P. Werle, T. Koskela, K. Lakkala, J. Lenoble, J. Groebner, H. Slaper, P. N. den Outer and U. Feister, Europe’s darker atmosphere in the UVB, Photochem. Photobiol. Sci., 2008, 7, 925–930.

    Article  CAS  PubMed  Google Scholar 

  57. N. Eguchi and T. Yokota, Investigation of clear-sky occurrence rate estimated from CALIOP and MODIS observations, Geophys. Res. Lett, 2008, 35, L23816.

    Article  Google Scholar 

  58. F. Hendrick, P. V. Johnston, M. De Mazière, C. Fayt, C. Hermans, K. Kreher, N. Theys, A. Thomas and M. Van Roozendael, One-decade trend analysis of stratospheric BrO over Harestua (60°N) and Lauder (45°S) reveals a decline, Geophys. Res. Lett, 2008, 35, L14801.

    Article  Google Scholar 

  59. S. Reimann, M. K. Vollmer, D. Folini, M. Steinbacher, M. Hill, B. Buchmann, R. Zander and E. Mahieu, Observations of long-lived anthropogenic halocarbons at the high-Alpine site of Jungfraujoch (Switzerland) for assessment of trends and European sources, Sci. Total Environ., 2008, 391, 224–231.

    Article  CAS  PubMed  Google Scholar 

  60. N. R. P. Harris, E. Kyrö, J. Staehelin, D. Brunner, S.-B. Andersen, S. Godin-Beekmann, S. Dhomse, P. Hadjinicolaou, G. Hansen, I. Isaksen, A. Jrrar, A. Karpetchko, R. Kivi, B. Knudsen, P. Krizan, J. Lastovicka, J. Maeder, Y. Orsolini, J. A. Pyle, M. Rex, K. Vanicek, M. Weber, I. Wohltmann, P. Zanis and C. Zerefos, Ozone trends at northern mid- and high latitudes - a European perspective, Ann. Geophys, 2008, 26, 1207–1220.

    Article  CAS  Google Scholar 

  61. P. A. Newman, J. S. Daniel, D. W. Waugh and E. R. Nash, A new formulation of equivalent effective stratospheric chlorine (EESC), Atmos. Chem. Phys., 2007, 7, 4537–4552.

    Article  CAS  Google Scholar 

  62. R. S. Stolarski and S. M. Frith, Search for evidence of trend slowdown in the long-term TOMS/SBUV total ozone data record: the importance of instrument drift uncertainty, Atmos. Chem. Phys., 2006, 6, 4057–4065.

    Article  CAS  Google Scholar 

  63. W. Steinbrecht, H. Claude, F. Schönenborn, I. S. McDermid, T. Leblanc, S. Godin-Beekman, P. Keckhut, A. Hauchecorne, J. A. E. van Gijsel, D. P. J. Swart, G. E. Bodeker, A. Parrish, I. S. Boyd, N. Kämpfer, K. Hocke, R. Stolarski, S. M. Frith, L. W. Thomason, E. E. Remsberg, C. von Savigny, A. Rozanov and J. P. Burrows, Ozone and temperature trends in the upper stratosphere at five stations of the Network for the Detection of Atmospheric Composition Change, Int. J. Remote Sens, 2009, 30, 3875–3886.

    Article  Google Scholar 

  64. D. Vyushin, V. E. Fioletov and T. G. Shepherd, Impact of long-range correlations on trend detection in total ozone, J. Geophys. Res., 2007, 112, D14307.

    Article  CAS  Google Scholar 

  65. E. S. Yang, D. M. Cunnold, M. J. Newchurch, R. J. Salawitch, M. P. McCormick, I. J. M. Russell, J. M. Zawodny and S. J. Oltmans, First stage of Antarctic ozone recovery, J. Geophys. Res., 2008, 113, D20308.

    Article  CAS  Google Scholar 

  66. J. K. Angell and M. Free, Ground-based observations of the slowdown in ozone decline and onset of ozone increase, J. Geophys. Res., 2009, 114, D07303.

    Google Scholar 

  67. IPCC, IPCC Fourth Assessment Reports (AR4): Working Group I Report: The Physical Basis, WMO/UNEP Report No., 2007, http://www.ipcc.ch/.

    Google Scholar 

  68. G. J. M. Velders, S. O. Andersen, J. S. Daniel, D. W. Fahey and M. McFarland, The importance of the Montreal Protocol in protecting climate, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 4814–4819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. M. Steinbacher, M. K. Vollmer, B. Buchmann and S. Reimann, An evaluation of the current radiative forcing benefit of the Montreal Protocol at the high-Alpine site Jungfraujoch, Sci. Total Environ., 2008, 391, 217–223.

    Article  CAS  PubMed  Google Scholar 

  70. O. Morgenstern, P. Braesicke, M. M. Hurwitz, F. M. O’Connor, A. C. Bushell, C. E. Johnson and J. A. Pyle, The world avoided by the Montreal Protocol, Geophys. Res. Lett, 2008, 35, L16811.

    Article  CAS  Google Scholar 

  71. D. W. J. Thompson and S. Solomon, Interpretation of recent Southern Hemisphere climate change, Science, 2002, 296, 895–899.

    Article  CAS  PubMed  Google Scholar 

  72. P. A. Newman, L. D. Oman, A. R. Douglass, E. L. Fleming, S. M. Frith, M. M. Hurwitz, S. R. Kawa, C. H. Jackman, N. A. Krotkov, E. R. Nash, J. E. Nielsen, S. Pawson, R. S. Stolarski and G. J. M. Velders, What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?, Atmos. Chem. Phys, 2009, 9, 2113–2128.

    Article  CAS  Google Scholar 

  73. B.-M. Sinnhuber, N. Sheode, M. Sinnhuber, M. P. Chipperfield and W. Feng, The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study, Atmos. Chem. Phys., 2009, 9, 2863–2871.

    Article  CAS  Google Scholar 

  74. J. S. Daniel, G. J. M. Velders, S. Solomon, M. McFarland and S. A. Montzka, Present and future sources and emissions of halocarbons: Toward new constraints, J. Geophys. Res, 2007, 112, D02301.

    Article  CAS  Google Scholar 

  75. P. Konopka, A. Engel, B. Funke, R. Müller, J.-U. Grooß, G. Günther, T. Wetter, G. Stiller, T. v. Clarmann, N. Glatthor, H. Oelhaf, G. Wetzel, M. López-Puertas, M. Pirre, N. Huret and M. Riese, Ozone loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effect of halogens., J. Geophys. Res., 2007, 112, D05105.

    Google Scholar 

  76. A. R. Ravishankara, J. S. Daniel and R. W. Portmann, Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century, Science, 2009, 326, 123–125.

    Article  CAS  PubMed  Google Scholar 

  77. C. L. Ballaré, M. M. Caldwell, S. D. Flint, S. A. Robinson and J. F. Bornman, Effects of solar UV radiation on terrestrial ecosystems Patterns, mechanisms, and interactions with climate change, Photochem. Photobiol. Sci., 2011, 10, DOI: 10.1039/c0pp90035d.

  78. X. Tang, S. R. Wilson, K. R. Solomon, M. Shao and S. Madronich, Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate, Photochem. Photobiol. Sci., 2011, 10, DOI: 10.1039/c0pp90039g.

  79. R. G. Zepp, D. J. Erickson III, N. D. Paul and B. Sulzberger, Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks, Photochem. Photobiol. Sci., 2011, 10, DOI: 10.1039/c0pp90037k.

  80. D. W. Waugh, L. Oman, S. R. Kawa, R. S. Stolarski, S. Pawson, A. R. Douglass, P. A. Newman and J. E. Nielsen, Impacts of climate change on stratospheric ozone recovery, Geophys. Res. Lett., 2009, 36, L03805.

    Google Scholar 

  81. G. J. M. Velders, D. W. Fahey, J. S. Daniel, M. McFarland and S. O. Andersen, The large contribution of projected HFC emissions to future climate forcing, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 10949–10954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. M. Molina, D. Zaelke, K. M. Sarma, S. O. Andersen, V. Ramanathan and D. Kaniaru, Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in C02 emissions, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 20616–20621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. D. Rind, J. Jonas, S. Stammerjohn and P. Lonergan, The Antarctic ozone hole and the Northern Annular Mode: A stratospheric inter-hemispheric connection, Geophys. Res. Lett., 2009, 36, L09818.

    Google Scholar 

  84. D. T. Shindell and G. A. Schmidt, Southern Hemisphere climate response to ozone changes and greenhouse gas increases, Geophys. Res. Lett., 2004, 31, L18209.

    Article  CAS  Google Scholar 

  85. M. P. Baldwin, M. Dameris and T. G. Shepherd, How Will the Stratosphere Affect Climate Change?, Science, 2007, 316, 1576–1577.

    Article  CAS  PubMed  Google Scholar 

  86. P. M. Forster, G. E. Bodeker, R. Schofield, S. Solomon and D. W. J. Thompson, Effects of ozone cooling in the tropical lower stratosphere and upper troposphere, Geophys. Res. Lett., 2007, 34, L23813.

    Article  Google Scholar 

  87. J. A. Crook, N. P. Gillett and S. P. E. Keeley, Sensitivity of Southern Hemisphere climate to zonal asymmetry in ozone, Geophys. Res. Lett., 2008, 35, L07806.

    Article  CAS  Google Scholar 

  88. T. G. Shepherd and A. I. Jonsson, On the attribution of stratospheric ozone and temperature changes to changes in ozone-depleting substances and well-mixed greenhouse gases, Atmos. Chem. Phys., 2008, 8, 1435–1444.

    Article  CAS  Google Scholar 

  89. D. Shindell, Climate Change: Cool ozone, Nat. Geoscl, 2008, 1, 85–86.

    Article  CAS  Google Scholar 

  90. S.-W. Son, L. M. Polvani, D. W. Waugh, H. Akiyoshi, R. Garcia, D. Kinnison, S. Pawson, E. Rozanov, T. G. Shepherd and K. Shibata, The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet, Science, 2008, 320, 1486–1489.

    Article  CAS  PubMed  Google Scholar 

  91. J. C. Comiso, C. L. Parkinson, R. Gersten and L. Stock, Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 2008, 35, L01703.

    Article  Google Scholar 

  92. J. Overland, J. Turner, Jennifer Francis, N. Gillett, G. Marshall and M. Tjernström, The Arctic and Antarctic:Two Faces of Climate Change, EOS, Trans. Am. Geophys. Union, 2008, 89, 177–178.

    Article  Google Scholar 

  93. J. F. Scinocca, M. C. Reader, D. A. Plummer, M. Sigmond, P. J. Kushner, T. G. Shepherd and A. R. Ravishankara, Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery, Geophys. Res. Lett., 2009, 36, L24701.

    Article  CAS  Google Scholar 

  94. M. Rex, R. J. Salawitch, H. Deckelmann, P. v. d. Gathen, N. R. P. Harris, M. P. Chipperfield, B. Naujokat, E. Reimer, M. Allaart, S. B. Andersen, R. Bevilacqua, G. O. Braathen, H. Claude, J. Davies, H. D. Backer, H. Dier, V. Dorokhov, H. Fast, M. Gerding, S. Godin-Beekmann, K. Hoppel, B. Johnson, E. Kyro¨, Z. Litynska, D. Moore, H. Nakane, M. C. Parrondo, A. D. R. Jr, P. Skrivankova, R. Stu¨bi, P. V. Yushkov and C. Zerefos, Arctic winter 2005: Implications for stratospheric ozone loss and climate change, Geophys. Res. Lett., 2006, 33, L23808.

    Article  CAS  Google Scholar 

  95. F. Li, R. S. Stolarski and P. A. Newman, Stratospheric ozone in the post-CFC era, Atmos. Chem. Phys., 2009, 9, 2207–2213.

    Article  CAS  Google Scholar 

  96. M. I. Hegglin and T. G. Shepherd, Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux, Nat. Geosci., 2009, 2, 687–691.

    Article  CAS  Google Scholar 

  97. S. Tilmes, R. Müller and R. Salawitch, The sensitivity of polar ozone depletion to proposed geoengineering schemes, Science, 2008, 320, 1201–1204.

    Article  CAS  PubMed  Google Scholar 

  98. A. Kazantzidis, K. Tourpali and A. F. Bais, Variability of cloud-free ultraviolet dose rates on global scale due to modeled scenarios of future ozone recovery, Photochem. Photobiol., 2010, 86, 117–122.

    Article  CAS  PubMed  Google Scholar 

  99. K. Tourpali, A. F. Bais, A. Kazantzidis, C. S. Zerefos, H. Akiyoshi, J. Austin, C. Brühl, N. Butchart, M. P. Chipperfield, M. Dameris, M. Deushi, V. Eyring, M. A. Giorgetta, D. E. Kinnison, E. Mancini, D. R. Marsh, T. Nagashima, G. Pitari, D. A. Plummer, E. Rozanov, K. Shibata and W. Tian, Clear sky UV simulations for the 21st century based on ozone and temperature projections from chemistry-climate models, Atmos. Chem. Phys., 2009, 9, 1165–1172.

    Article  CAS  Google Scholar 

  100. SPARC CCMVal, SPARC Report on the Evaluation of Chemistry-Climate Models, V. Eyring, T. G. Shepherd, D. W. Waugh (ed.), SPARC Report No. 5, WCRP-132, WMO/TD-No. 1526, http://www.atmosp.physics.utoronto.ca/SPARC, 2010.

  101. K. E. Trenberth and J. T. Fasullo, Global warming due to increasing absorbed solar radiation, Geophys. Res. Lett., 2009, 36, L07706.

    Article  Google Scholar 

  102. V. Eyring, M. P. Chipperfield, M. A. Giorgetta, D. E. Kinnison, E. Manzini, K. Matthes, P. A. Newman, S. Pawson, T. G. Shepherd and D. W. Waugh, Overview of the New CCMVal Reference and Sensitivity Simulations in Support of Upcoming Ozone and Climate Assessments and the Planned SPARC CCMVal Report, SPARC Newsletter, 2008, 30, 20–26.

    Google Scholar 

  103. S. Madronich, R. L. McKenzie, L. O. Björn and M. M. Caldwell, Changes in biologically active ultraviolet radiation reaching the Earth’s surface, J. Photochem. Photobiol., B, 1998, 46, 5–19.

    Article  CAS  Google Scholar 

  104. M. I. Micheletti, R. D. Piacentini and S. Madronich, Sensitivity of biologically active UV radiation to stratospheric ozone changes: effect of action spectrum shape and wavelength range, Photochem. Photobiol, 2003, 78, 456–461.

    Article  CAS  PubMed  Google Scholar 

  105. A. F. McKinlay and B. L. Diffey, A reference action spectrum for ultra-violet induced erythema in human skin, in Human Exposure to Ultraviolet Radiation: Risks and Regulations ed.: W. F. Passchier and B. F. M. Bosnajakovic, Elsevier, Amsterdam, 1987, pp. 83–87.

    Google Scholar 

  106. R. Bouillon, J. Eisman, M. Garabedian, M. Holick, J. Kleinschmidt, T. Suda, I. Terenetskaya and A. Webb, Action spectrum for the production of previtamin D3 in human skin, CIE Technical Report No. CIE 174:2006, 2006, 16 pp., ISBN 3 901 906 50 9.

    Google Scholar 

  107. V. E. Fioletov, L. J. B. McArthur, T. W. Mathews and L. Marrett, On the relationship between erythemal and vitamin D action spectrum weighted ultraviolet radiation, J. Photochem. Photobiol, B, 2009, 95, 9–16.

    Article  CAS  Google Scholar 

  108. S. J. Pope, M. F. Holick, S. Mackin and D. E. Godar, Action spectrum conversion factors to change erythemally weighted to previtamin D3-weighted UV doses, Photochem. Photobiol., 2008, 84, 1277–1283.

    Article  CAS  PubMed  Google Scholar 

  109. P. Koepke and M. Mech, UV radiation on arbitrarily oriented surfaces: Variation with atmospheric and ground properties, Theor. Appl. Climatol, 2005, 81, 25–32.

    Article  Google Scholar 

  110. M. Norval, L. O. Björn and F. R. d. Gruijl, Is the action spectrum for the UV-induced production of previtamin D3 in human skin correct?, Photochem. Photobiol. Sci., 2010, 9, 11–17.

    Article  CAS  PubMed  Google Scholar 

  111. A. Kazantzidis, A. F. Bais, M. M. Zempila, S. Kazadzis, P. N. d. Outer, T. Koskela and H. Slaper, Calculations of the human Vitamin D exposure from UV spectral measurements at three European stations, Photochem. Photobiol. Sci., 2009, 8, 45–51.

    Article  CAS  PubMed  Google Scholar 

  112. R. L. McKenzie, J. B. Liley and L. O. Björn, UV Radiation: Balancing Risks and Benefits, Photochem. Photobiol., 2009, 85, 88–98.

    Article  CAS  PubMed  Google Scholar 

  113. A. R. Webb, L. Kline and M. F. Holick, Influence of season and latitude on the cutaneous synthesis of vitamin D3: Exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin, J. Clin. Endocrinol. Metab, 1988, 67, 373–378.

    Article  CAS  PubMed  Google Scholar 

  114. M. Allen and R. McKenzie, Enhanced UV exposure on a ski-field compared with exposures at sea level, Photochem. Photobiol. Sci., 2005, 4, 429–437.

    Article  CAS  PubMed  Google Scholar 

  115. P. Gies, R. Watz, J. Javorniczky, C. Roy, S. Henderson, J. Ayton and M. Kingston, Measurements of the UVR exposures of expeditioners on Antarctic resupply voyages, Photochem. Photobiol., 2009, 85, 1485–1490.

    Article  CAS  PubMed  Google Scholar 

  116. B. L. Diffey, C. T. Jansén, F. Urbach and H. C. Wulf, The Standard Erythema Dose: a new photobiological concept, Photodermatol. Photoimmunol. Photomed., 1997, 13, 64–66.

    Article  CAS  PubMed  Google Scholar 

  117. P. Rnuschke, I. Unverricht, G. Ott and M. Jansen, Personenbezogene messung der UV-Exposition von Arbeitnehmern im freien, Bundesanstalt fur Arbeitsschutz und Arbeitsmedian (BAUA) Report No., Dortmund/Berlin/Dresden, 2007, p. 195, http://www.baua.de/cae/servlet/contentblob/699494/publicationFile/46848/F1777.pdf.

    Google Scholar 

  118. C. Y. Wright, A. I. Reeder, G. E. Bodeker, A. Gray and B. Cox, Solar UVR exposure, concurrent activities and sun-protective practices among primary schoolchildren, Photochem. Photobiol., 2007, 83, 749–758.

    Article  CAS  PubMed  Google Scholar 

  119. V. Hammond, A. Reeder and A. Gray, Patterns of real-time occupational ultraviolet radiation exposure among a sample of outdoor workers in New Zealand, Public Health, 2009, 123, 182–187.

    Article  CAS  PubMed  Google Scholar 

  120. J. Heydenreich and H. C. Wulf, Miniature personal electronic UVR dosimeter with erythema response and time-stamped readings in a wristwatch, Photochem. Photobiol, 2005, 81, 1138–1144.

    Article  CAS  PubMed  Google Scholar 

  121. E. Thieden, Sun exposure behaviour among subgroups of the Danish population, Dan. Med. Bull, 2008, 55, 47–68.

    PubMed  Google Scholar 

  122. A. M. Siani, G. R. Casale, R. Sisto, M. Borra, M. G. Kimlin, C. A. Lang and A. Colosimo, Short-term UV exposure of sunbathers at a Mediterranean Sea site, Photochem. Photobiol, 2009, 85, 171–177.

    Article  CAS  PubMed  Google Scholar 

  123. A. M. Siani, G. R. Casale, H. Diémoz, G. Agnesod, M. G. Kimlin, C. A. Lang and A. Colosimo, Personal UV exposure on a ski-field at an alpine site, Atmos. Chem. Phys., 2008, 8, 3749–3760.

    Article  CAS  Google Scholar 

  124. B. L. Diffey, Human exposure to solar ultraviolet radiation, J. Cosmet. Dermatol, 2002, 1, 124–130.

    Article  PubMed  Google Scholar 

  125. B. Diffey, A behavioral model for estimating population exposure to solar ultraviolet radiation, Photochem. Photobiol, 2008, 84, 371–375.

    Article  CAS  PubMed  Google Scholar 

  126. M. Anton, M. L. Cancillo, A. Serrano, J. M. Vaquero and J. A. Garcia, Ozone mini-hole over southwestern Spain during January 2004: Influence over ultraviolet radiation, Geophys. Res. Lett., 2007, 34, L10808.

    Article  CAS  Google Scholar 

  127. G. Seckmeyer, B. Mayer, G. Bernhard, R. Erb, A. Albold, H. Jäger and W. R. Stockwell, New maximum UV irradiance levels observed in Central Europe, Atmos. Environ., 1997, 31, 2971–2976.

    Article  CAS  Google Scholar 

  128. C. Stick, K. Krüger, N. H. Schade, H. Sandmann and A. Macke, Episode of unusual high solar ultraviolet radiation over central Europe due to dynamical reduced total ozone in May 2005, Atmos. Chem. Phys., 2006, 6, 1771–1776.

    Article  CAS  Google Scholar 

  129. A. Anders, H. J. Altheide, M. Känlmann and H. Lronnier, Action spectrum for erythema in humans investigated with dye lasers, Photochem. Photobiol, 1995, 61, 200–205.

    Article  CAS  PubMed  Google Scholar 

  130. F. R. De Gruijl and J. C. Van Der Leun, Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of stratospheric ozone depletion, Health Phys., 1994, 67, 319–325.

    Article  PubMed  Google Scholar 

  131. ACGIH, Lhreshold limit values for chemical substances and physical agents, 1992-1993, in American Conference of Governmental Industrial Hygienists, Vol. 31, Cincinnati, OH, USA, 1992.

  132. O. M. Oriowo, A. P. Cullen, B. R. Chou and J. G. Sivak, Action spectrum and recovery for in vitro UV-induced cataract using whole lenses, Invest. Ophthalmol. Vis. Sci., 2001, 42, 2596–2602.

    CAS  PubMed  Google Scholar 

  133. C.A. Mazza, M. M. Izaguirre, J. Curiale and C. L. Ballare, A look into the invisible: ultraviolet-B sensitivity in an insect (Caliothrips phaseoli) revealed through a behavioural action spectrum, Proc. R. Soc. London, Ser. B, 2010, 277, 367–373.

    CAS  Google Scholar 

  134. R. B. Setlow, Lhe wavelengths in sunlight effective in producing skin cancer: A theoretical analysis, Proc. Natl. Acad. Sci. U.S.A., 1974, 71, 3363–3366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. F. E. Quaite, B. M. Sutherland and J. C. Sutherland, Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion, Nature, 1992, 358, 576–578.

    Article  CAS  Google Scholar 

  136. M. M. Caldwell, Solar UV irradiation and the growth and development of higher plants, in Current Topics in Photobiology and Photochemistry Photophysiology, Vol. VI, ed.: A. C. Giese, Academic Press, New York, USA, 1971, pp. 131–177.

    Google Scholar 

  137. S. D. Flint and M. M. Caldwell, A biological spectral weighting function for ozone depletion research with higher plants, Physiol. Plant., 2003, 117, 137–144.

    Article  CAS  Google Scholar 

  138. J. J. Cullen, P. J. Neale and M. P. Lesser, Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation, Science, 1992, 258, 646–650.

    Article  CAS  PubMed  Google Scholar 

  139. N. P. Boucher and B. B. Prezelin, An in situ biological weighting function for UV inhibition of phytoplankton carbon fixation in the Southern Ocean, Mar. Ecol: Prog. Ser, 1996, 144, 223–236.

    Article  Google Scholar 

  140. A. T. Banaszak and P. T. Neale, Ultraviolet radiation sensitivity of photosynthesis in phytoplankton from an estuarine environment, Limnol. Oceanogr, 2001, 46, 592–603.

    Article  Google Scholar 

  141. C. E. Williamson, P. J. Neale, G. Grad, H. J. d. Lange and B. R. Hargreaves, Beneficial and detrimental effects of uv on aquatic organisms: implications of spectral variation, Ecol. Appl, 2001, 11, 1843–1857.

    Article  Google Scholar 

  142. C. L. Osburn, H. E. Zagarese, D. P. Morris, B. R. Hargreaves and W. E. Cravero, Calculation of spectral weighting functions for the solar photobleaching of chromophoric dissolved organic matter in temperate lakes, Limnol. Oceanogr, 2001, 46, 1455–1467.

    Article  CAS  Google Scholar 

  143. A. Vähätalo and R. G. Zepp, Photochemical mineralization of dissolved organic nitrogen to ammonium in the Baltic Sea, Environ. Sci. Technol, 2005, 39, 6985–6992.

    Article  PubMed  CAS  Google Scholar 

  144. G. W. Schade, R. M. Hofmann and P. J. Crutzen, CO emissions from degrading plant matter (I). Measurements, Tellus, Ser. B, 1999, 51, 889–908.

    Article  Google Scholar 

  145. W. L. Miller, M. A. Moran, W. M. Sheldon, R. G. Zepp and S. P. Opsahl, Determination of apparent quantum yield spectra for the formation of biologically labile photoproducts, Limnol. Oceanogr, 2002, 47, 343–352.

    Article  CAS  Google Scholar 

  146. L. A. Ziolkowski and W. A. Miller, Variability of the apparent quantum efficiency of CO photoproduction in the Gulf of Maine and Northwest Atlantic, Mar. Chem., 2007, 105, 258–270.

    Article  CAS  Google Scholar 

  147. B. Lartarotti, W. Cravero and H. E. Zagarese, Biological weighting function for the mortality of Boeckella gracilipes (Copepoda, Crustacea) derived from experiments with natural solar radiation, Photochem. Photobiol, 2000, 72, 314–319.

    Article  Google Scholar 

  148. M. P. Lesser, L. M. Barry, M. D. Lamare and M. F. Barker, Biological weighting functions for DNA damage in sea urchin embryos exposed to ultraviolet radiation, J. Exp. Mar. Biol. Ecol, 2006, 328, 10–21.

    Article  CAS  Google Scholar 

  149. G. Gardner, C. Lin, E. M. Lobin, H. Loehrer and D. Brinkman, Photobiological properties of the inhibition of etiolated Arabidopsis seedling growth by ultraviolet-B irradiation, Plant, Cell Environ., 2009, 32, 1573–1583.

    Article  CAS  Google Scholar 

  150. H. Miller, L. III, P. J. Neale and K. H. Dunton, ßiological weighting functions for UV inhibition of photosynthesis in the kelp laminaria hyperborea (phaeophyceae), J. Phycol, 2009, 45, 571–584.

    Article  CAS  Google Scholar 

  151. S. A. Mang, D. K. Henricksen, Adam P. Bateman, M. P. S. Andersen, D. R. Blake and S. A. Nizkorodov, Contribution of carbonyl photochemistry to aging of atmospheric secondary organic aerosol, J. Phys. Chem. A, 2008, 112, 8337–8344.

    Article  CAS  PubMed  Google Scholar 

  152. M. L. Walser, J. Park, A. L. Gomez, A. R. Russell and S. A. Nizkorodov, Photochemical aging of secondary organic aerosol particles generated from the oxidation of d-Limonene, J. Phys. Chem. A, 2007, 111, 1907–1913.

    Article  CAS  PubMed  Google Scholar 

  153. A. L. Andrady, K. Fueki and A. Lorikai, Photodegradation of rigid PVC formulations. I. Wavelength sensitivity of light induced yellowing by monochromatic light, J. Appl. Polym. Sci., 1989, 37, 935–946.

    Article  CAS  Google Scholar 

  154. A. L. Andrady, K. Fueki and A. Lorikai, Spectral sensitivity of polycarbonate to light-induced yellowing, J. Appl. Polym. Sci., 1991, 42, 2105–2107.

    Article  CAS  Google Scholar 

  155. A. L. Andrady, Y. Song, V. R. Parthasarathy, K. Fueki and A. Lorikai, Photoyellowing of mechanical pulp. Part I: Examining the wavelength sensitivity of light-induced yellowing using monochromatic radiation, TAPPI.I, 1991, 74, 162–168.

    CAS  Google Scholar 

  156. JPL, Chemical Kinetics and Photochemical Data for Atmospheric Studies Evaluation Number 16, Vol. 09-31, NASA Panel for Data Evaluation, Jet Propulsion Laboratory, Los Angeles, 2009.

    Google Scholar 

  157. A. R. Webb and O. Engelsen, Calculated ultraviolet exposure levels for a healthy vitamin D status, Photochem. Photobiol, 2006, 82, 1697–1703.

    Article  CAS  PubMed  Google Scholar 

  158. T. B. Fitzpatrick, Lhe validity and practicality of Sun-reactive skin types I through VI, Arch. Dermatol, 1988, 124, 869–871.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. McKenzie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKenzie, R.L., Aucamp, P.J., Bais, A.F. et al. Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 10, 182–198 (2011). https://doi.org/10.1039/c0pp90034f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp90034f

Navigation