Skip to main content

Advertisement

Log in

Light relief: photochemistry and medicine

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photomedicine as a ‘modern’ subject began in the late 1880’s, and currently encompasses the effects of light upon the skin, diagnostic uses of light, therapies using non-laser light, and the use of lasers. Effects of light on the skin include production of Vitamin D, tanning, ageing of the skin, and the skin cancers basal cell and squamous cell carcinomas, and malignant melanoma. Diagnostic uses of light include luminescence [photo and chemi] in immunoassays, fluorescence in cell sorting, and the various forms of fluorescence microscopy, including confocal, fluorescence lifetime imaging [FLIM], and single molecule. Therapies include the PUVA treatment of psoriasis and vitiligo, blue light curing of neonatal jaundice, and photoinactivation of microbes. Laser treatments include ablative corrective eye surgery, general ‘bloodless’ surgery, and, of most importance photochemically, the various treatments using sensitisers and laser light known as photodynamic therapy, PDT. We concentrate here on discussion of future developments in PDT, concluding that the main advance will be through targeted PDT, in which the tissue to be destroyed receives the photosensitiser in a highly selective fashion. Strategies to achieve this highlighted here are the use of monoclonal antibody fragments selected for tumour cell targets, and two-photon spatial selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Science of Photomedicine, ed. J. D. Regan and J. A. Parrish, Plenum Press, NY and London, 1982.

    Google Scholar 

  2. D. Phillips, A Little Light Relief, in Proceedings of the Royal Institution, ed. G. Porter and D. Phillips, Science Reviews, 1984, pp 161–175.

    Google Scholar 

  3. Klaus Suhling, Paul M. W. French, David Phillips, Time-resolved fluorescence microscopy, Photochem. Photobiol. Sci., 2005, 4, 13–22.

    Article  CAS  PubMed  Google Scholar 

  4. J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, P. M. W. French, Y. Sabharwal, Wide-field time-resolved anisotropy imaging TRFAIM; Imaging the mobility of a fluorophore, Rev. Sci. Instrum., 2003, 74, 182–192.

    Article  CAS  Google Scholar 

  5. D. Elson, S. E. D. Webb, J. Siegel, K. Suhling, D. M. David, J. Lever, D. Phillips, A. Wallace, P. M. W. French, Biomedical applications of fluorescence lifetime imaging, Opt. Photonics News, 2002, 13, 26–30.

    Article  CAS  Google Scholar 

  6. K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, Imaging the environment of Green Fluorescent Protein, GFP, Biophys. J., 2002, 83, 3589–3595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T. A. Klar, M. Dyba, S. W. Hell, Stimulated emission depletion microscopy with an offset depleting beam, Appl. Phys. Lett., 2001, 78, 393–396.

    Article  CAS  Google Scholar 

  8. T. A. Klar, E. Engel, S. W. Hell, Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2001, 64, 0066613.

    Article  CAS  Google Scholar 

  9. S. Habuchi, R. Ando, P. Dedecker, W. Verheijen, H. Mizano, A. Miyawaki, J. Hofkens, Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 9511–9516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. Treanor, P. M. P. Lanigan, K. Suhling, T. Schreiber, I. Munro, M. A. A. Neil, D. Phillips, D. M. Davis, P. M. W. French, Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse, J. Microsc., 2005, 217, 36–43.

    Article  CAS  PubMed  Google Scholar 

  11. Bebhin Treanor, Peter M. P. Lanigan, Sunil Kumar, Chris Dunsby, Ian Munro, Egidijus Auksorius, Fiona J. Culley, Marco A. Purbhoo, David Phillips, Mark A. A. Neil, Deborah N. Burshtyn, Paul M. W. French, Daniel M. Davis, Microclusters of inhibitory killer immunoglobulin-like receptor signalling at Natural Killer Cell immunological synapses, J. Cell Biol., 2006, 174, 153–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. K. Kuimova, S. W. Botchway, A. W. Parker, M. Balaz, H. A. Collins, H. L. Anderson, K. Suhling, P. R. Ogilby, Imaging cellular viscosity of a single cell during photo-induced cell death, Nat. Chem., 2009, 1, 69–73.

    Article  CAS  PubMed  Google Scholar 

  13. M. K. Kuimova, G. Yahioglu, J. A. Levitt, K. Suhling, Molecular rotor measures viscosity via fluorescence lifetime imaging, J. Am. Chem. Soc., 2008, 130, 6672–6673.

    Article  CAS  PubMed  Google Scholar 

  14. P. Dedecker, J. Hofkens, Single molecule spectroscopy;Caught in the trap, Nat. Chem., 2010, 2, 157–159.

    Article  CAS  PubMed  Google Scholar 

  15. M. Gudmand, S. Rocha, N. S. Hatzakis, K. Peneva, K. Mullen, D. Stamou, H. Uji-I, J. Hofkens, T. Bjornholm, T. Heimburg, Influence of lipid heterogeneity and phase behaviour on phospholipase A2 action at the single molecule level, Biophys. J., 2010, 98, 1873–1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Forthmann, P. Tinnefeld, S. W. Hell, M. Sauer, Single Molecule STED miscroscopy with photo-labile organic chromophores, Small, 2010, 6, 1379–1384.

    Article  PubMed  CAS  Google Scholar 

  17. L. Kastrup, D. Wildanger, B. Rankin and S. W. Hell, Stimulated emission depletion microscopy with compact light sources, in Nanoscopy and Multidimensional Fluorescence Microscopy, ed. A. Diaspro, Chapman and Hall/CRC, Boca Raton, 2010, pp. 1–13.

    Google Scholar 

  18. D. Wildanger, E. Rittweger, L. Kastrup, S. W. Hell, STED Microscopy with a supercontinuum laser source, Opt. Express, 2008, 16, 9614–9621.

    Article  PubMed  Google Scholar 

  19. G. Moneron, S. W. Hell, Two-photon excitation STED miscroscopy, Opt. Express, 2009, 17, 14567–14573.

    Article  CAS  PubMed  Google Scholar 

  20. P. J. Lou, L. Jones, C. Hopper, Clinical outcomes of photodynamic therapy for head and neck cancer, Technol. Cancer Res. Treat., 2003, 2, 311–317.

    Article  CAS  PubMed  Google Scholar 

  21. M. R. Hamblin, T. Hassan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. N. M. Bressler, S. B. Bressler, Photodynamic therapy with vertoporfin (Visudyne®): impact on opthalmology and visual science, Invest. Opthalmol. Vis. Sci., 2000, 41, 624–628.

    CAS  Google Scholar 

  23. S. Pervaiz, Reactive oxygen-dependent production of novel photochemotherapeutic agents, FASEB J., 2001, 15, 612–617.

    Article  CAS  PubMed  Google Scholar 

  24. S. Y. Egorov, V. F. Kamalov, N. I. Koroteev, A. A. Krasnovsky, B. N. Toleutaev, S. V. Zinukov, Rise and decay kinetics of photosensitized singlet oxygen luminescence in water Measurements with nanosecond time-correlated single photon counting technique, Chem. Phys. Lett., 1989, 163, 421–424.

    Article  CAS  Google Scholar 

  25. E. Skovsen, J. W. Snyder, J. D. C. Lambert, P. R. Ogilby, Lifetime and diffusion of singlet oxygen in a cell, J. Phys. Chem. B, 2005, 109, 8570–8573.

    Article  CAS  PubMed  Google Scholar 

  26. M. K. Kuimova, G. Yahioglu, P. R. Ogilby, Singlet oxygen in a cell: spatially-dependent lifetimes and quenching rate constants, J. Am. Chem. Soc., 2009, 131, 332–340.

    Article  CAS  PubMed  Google Scholar 

  27. S. Hatz, L. Poulsen, P. R. Ogilby, Time-resolved singlet oxygen phosphorescence measurements from photosensitized experiments in single cells: the effects of oxygen diffusion and oxygen concentration, Photochem. Photobiol., 2008, 84, 1284–1290.

    Article  CAS  PubMed  Google Scholar 

  28. J. Moan, K. Berg, The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Photochem. Photobiol., 1991, 53, 549–553.

    Article  CAS  PubMed  Google Scholar 

  29. T. C. Oldham, D. Phillips, Flash photolysis of sensitisers in microbes, J. Phys. Chem. B, 1999, 103, 9333–9349

    Article  CAS  Google Scholar 

  30. J. A. Lacey, D. Phillips, Identification of a transient radical species in microbial systems using diffuse reflectance laser flash photolysis, Phys. Chem. Chem. Phys., 2002, 4, 232–238.

    Article  CAS  Google Scholar 

  31. S. Tubby, M. Wilson, S. P. Nair, Inactivation of staphylococcus virulence factors using a light-activated antimicrobial agent, BMC Microbiol., 2009, 9, 211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. E. F. F. Silva, C. Serpa, J. M. Dabrowski, C. P. Montairo, S. J. Formosinho, G. Stochel, K. Urbanska, S. Simoes, M. M. Pereira, L. G. Arnaut, Mechanisms of singlet oxygen and superoxide ion generation by porphyrins and bacteriochlorins and their implications in photodynamic therapy, Chem.–Eur. J., 2010, 16, 9273–9286.

    Article  CAS  PubMed  Google Scholar 

  33. J. J. Schuitmaker, P. Baas, H. L. L. M. van Leengoed, F. W. van der Muelen, W. Star, N. van Zandwijk, Photodynamic therapy:a promising new modality for the treatment of cancer, J. Photochem. Photobiol., B, 1996, 34, 3–12.

    Article  CAS  Google Scholar 

  34. J. E. Brown, S. B. Brown, D. I. Vernon, Photodynamic therapy: new light on cancer treatment, Color. Technol., 1999, 115, 249–253.

    CAS  Google Scholar 

  35. D. Phillips, Chemical mechanisms in photodynamic therapy with phthalocyanines, Prog. React. Kinet. Mech., 1997, 22, 175–300.

    CAS  Google Scholar 

  36. H. J. Nyst, B. I. Tan, F. A. Stewart, A. J. M. Balm, Is photodynamic therapy a good alternative to surgery and radiotherapy in the treatment of head and neck cancer ?, Photodiagn. Photodyn. Ther., 2009, 6, 3–11.

    Article  CAS  Google Scholar 

  37. Chemical Aspects of Photodynamic Therapy, ed. R. Bonnet, Gordon and Breach Science Publishers, London, 2000.

    Google Scholar 

  38. K. J. Mellish, S. B. Brown, Verteporfin: a milestone in ophthalmology and photodynamic therapy, Expert Opin. Pharmacother., 2001, 2, 351–361.

    Article  CAS  PubMed  Google Scholar 

  39. A. E. O’Connor, W. M. Gallagher, A. T. Byrne, Porphyrin and non-porphyrin photosensitisers in oncology: Preclinical and clinical advances in Photodynamic Therapy, Photochem. Photobiol., 2009, 85, 1053–1074.

    Article  PubMed  CAS  Google Scholar 

  40. D. R. Russell, Private communication

  41. R. Schneider, F. Schmitt, C. Frochot, Y. Fort, N. Lourette, F. Guillemin, J. F. Muller, M. Barberi-Heyob, Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitisers for selective photodynamic therapy, Bioorg. Med. Chem., 2005, 13, 2799–2808.

    Article  CAS  PubMed  Google Scholar 

  42. J. Gravier, R. Schneider, C. Frochot, T. Bstogne, F. Schmitt, J. Didelon, F. Guillemin, M. Barberi-Heyob, Improvement of m-THPC-like photosensitiser selectivity with Folate-based targeted delivery;synthesis and in vivo delivery studies, J. Med. Chem., 2008, 51, 3867–3877.

    Article  CAS  PubMed  Google Scholar 

  43. N. Thomas, D. Bechet, P. Becuwe, L. Tirand, R. Vanderesse, C. Frochot, F. Guillemin, M. Barberi-Heyob, Peptide-conjugated chlorine-type photosensitiser binds neuropilin-1 in vitro and in vivo, J. Photochem. Photobiol., B, 2009, 96, 101–108.

    Article  CAS  Google Scholar 

  44. D. Bechet, P. Couleaud, C. Frochot, M. L. Viriot, M. Barberi-Heyob, Nanoparticles for photodynamic therapy agent delivery, Trends Biotechnol., 2008, 26, 612–621.

    Article  CAS  PubMed  Google Scholar 

  45. P. Couleaud, V. Morosimi, C. Frochot, S. Richeter, L. Raehm, J. O. Durand, Silica based nanoparticles for photodynamic therapy applications, Nanoscale, 2010, 2, 1083–1095.

    Article  CAS  PubMed  Google Scholar 

  46. Ioanna Stamati, Ph.D. Thesis, Imperial College London, 2010.

    Google Scholar 

  47. Marina K. Kuimova, Hazel A. Collins, Milan Balaz, Emmas Dahlstedt, James A. Levitt, Nicolas Sergent, Klaus Suhling, Mikhail Drobizhev, Alexander Rebane, Harry L. Anderson, David Phillips, Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy, Org. Biomol. Chem., 2009, 7, 889–896.

    Article  CAS  PubMed  Google Scholar 

  48. Emma Dahlstedt, Hazel A. Collins, Milan Balaz, Marina K. Kuimova, Mamta Khurana, Brian C. Wilson, David Phillips, Harry L. Anderson, One- and two-photon activated phototoxicity of conjugated porphyrin dimers with high two-photon absorption cross-sections, Org. Biomol. Chem., 2009, 7, 897–904.

    Article  CAS  PubMed  Google Scholar 

  49. Hazel A. Collins, Mamta Khurana, Eduardo Moriyama, Adrian Mariammpillai, Emma Dahlstedt, Milan Balaz, Marina K. Kuimova, David Phillips, Brian C. Wilson, Harry L. Anderson, Blood vessel closure via two-photon excitation of a conjugated porphyrin dimer, Nat. Photonics, 2008, 2, 420–425.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, D. Light relief: photochemistry and medicine. Photochem Photobiol Sci 9, 1589–1596 (2010). https://doi.org/10.1039/c0pp00237b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00237b

Navigation