Skip to main content
Log in

Engineered photoreceptors as novel optogenetic tools

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Cellular processes and indeed the survival of entire organisms crucially depend on precise spatiotemporal coordination of a multitude of molecular events. A new tool in cell biology is denoted “optogenetics” which describes the use of genetically encoded, light-gated proteins, i.e. photoreceptors, which perturb and control cellular and organismal behavior in a spatiotemporally exact manner. Photoreceptors resemble fluorescent reporter proteins such as GFP in being genetically encoded, non-invasive, and applicable to intact cells and organisms. They are explicitly intended to modulate activity; in contrast, fluorescent proteins generally do not disturb the processes under study. Fluorescent proteins have revolutionized cell biology because they allow the monitoring of such processes by imaging techniques that offer superb spatiotemporal resolution and sensitivity. Optogenetics extends these advantages to offer control. The scope of optogenetics has recently been expanded beyond the use of naturally occurring photoreceptors by the biologically-inspired design of engineered (or synthetic) photoreceptors. These photoreceptors are derived by fusion of one or more light-absorbing sensor domains with an output or effector domain displaying the activity to be controlled. Here, we focus on the design and application of such engineered photoreceptors. We treat basic signaling principles and discuss the two photosensor classes which are currently most widely used in fusion-based design: LOV domains and phytochromes. Based on these principles, we develop general strategies for the engineering of photoreceptors. Finally, we review recently successful examples of the design and application of engineered photoreceptors. Our perspective provides guidelines for researchers interested in developing and applying novel optogenetic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Y. Tsien, Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture), Angew. Chem., Int. Ed., 2009, 48, 5612–5626.

    Article  CAS  Google Scholar 

  2. T. A. Klar, S. W. Hell, Subdiffraction resolution in far-field fluorescence microscopy, Opt. Lett., 1999, 24, 954–956.

    Article  CAS  PubMed  Google Scholar 

  3. G. Nagel, D. Ollig, M. Fuhrmann, S. Kateriya, A. M. Musti, E. Bamberg, P. Hegemann, Channelrhodopsin-1: a light-gated proton channel in green algae, Science, 2002, 296, 2395–2398.

    Article  CAS  PubMed  Google Scholar 

  4. V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, K. Deisseroth, Optical deconstruction of parkinsonian neural circuitry, Science, 2009, 324, 354–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, M. J. Schnitzer, Next-generation optical technologies for illuminating genetically targeted brain circuits, J. Neurosci., 2006, 26, 10380–10386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. V. Gradinaru, F. Zhang, C. Ramakrishnan, J. Mattis, R. Prakash, I. Diester, I. Goshen, K. R. Thompson, K. Deisseroth, Molecular and cellular approaches for diversifying and extending optogenetics, Cell, 2010, 141, 154–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Goeldner and R. Givens, Dynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules, Wiley-VCH, Weinheim, Germany, 2005.

    Book  Google Scholar 

  8. G. C. R. Ellis-Davies, Caged compounds: photorelease technology for control of cellular chemistry and physiology, Nat. Methods, 2007, 4, 619–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P. Gorostiza, E. Y. Isacoff, Optical Switches for Remote and Noninvasive Control of Cell Signaling, Science, 2008, 322, 395–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. Deiters, Principles and applications of the photochemical control of cellular processes, ChemBioChem, 2009, 11, 47–53.

    Article  CAS  Google Scholar 

  11. C. W. Riggsbee, A. Deiters, Recent advances in the photochemical control of protein function, Trends Biotechnol., 2010, 28, 468–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. Balasubramanian, S. Subramani, C. Kumar, Modification of a model membrane structure by embedded photochrome, Nature, 1975, 254, 252–254.

    Article  CAS  PubMed  Google Scholar 

  13. S. Khan, K. Amoyaw, J. L. Spudich, G. P. Reid, D. R. Trentham, Bacterial chemoreceptor signaling probed by flash photorelease of a caged serine, Biophys. J., 1992, 62, 67–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. N. Wu, A. Deiters, T. A. Cropp, D. King, P. G. Schultz, A genetically encoded photocaged amino acid, J. Am. Chem. Soc., 2004, 126, 14306–14307.

    Article  CAS  PubMed  Google Scholar 

  15. J. Monod, J. Wyman, J. P. Changeux, On the Nature of Allosteric Transitions: A Plausible Model, J. Mol. Biol., 1965, 12, 88–118.

    Article  CAS  PubMed  Google Scholar 

  16. A. Möglich, R. A. Ayers, K. Moffat, Structure and Signaling Mechanism of Per-ARNT-Sim Domains, Structure, 2009, 17, 1282–1294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. V. A. Feher, J. W. Zapf, J. A. Hoch, J. M. Whiteley, L. P. McIntosh, M. Rance, N. J. Skelton, F. W. Dahlquist, J. Cavanagh, High-resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition, Biochemistry, 1997, 36, 10015–10025.

    Article  CAS  PubMed  Google Scholar 

  18. B. F. Volkman, D. Lipson, D. E. Wemmer, D. Kern, Two-state allosteric behavior in a single-domain signaling protein, Science, 2001, 291, 2429–2433.

    Article  CAS  PubMed  Google Scholar 

  19. X. Yao, M. K. Rosen, K. H. Gardner, Estimation of the available free energy in a LOV2-J alpha photoswitch, Nat. Chem. Biol., 2008, 4, 491–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D. E. Koshland, G. Nemethy, D. Filmer, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry, 1966, 5, 365–385.

    Article  CAS  PubMed  Google Scholar 

  21. K. Moffat, Time-resolved biochemical crystallography: a mechanistic perspective, Chem. Rev., 2001, 101, 1569–1581.

    Article  CAS  PubMed  Google Scholar 

  22. M. A. van der Horst, K. J. Hellingwerf, Photoreceptor proteins, “star actors of modern times”: a review of the functional dynamics in the structure of representative members of six different photoreceptor families, Acc. Chem. Res., 2004, 37, 13–20.

    Article  PubMed  CAS  Google Scholar 

  23. A. Möglich, X. Yang, R. A. Ayers, K. Moffat, Structure and Function of Plant Photoreceptors, Annu. Rev. Plant Biol., 2010, 61, 21–47.

    Article  PubMed  CAS  Google Scholar 

  24. N. C. Rockwell, J. C. Lagarias, A brief history of phytochromes, ChemPhysChem, 2010, 11, 1172–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T. Pawson, P. Nash, Assembly of cell regulatory systems through protein interaction domains, Science, 2003, 300, 445–452.

    Article  CAS  PubMed  Google Scholar 

  26. V. Anantharaman, S. Balaji, L. Aravind, The signaling helix: a common functional theme in diverse signaling proteins, Biol. Direct, 2006, 1, 25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. S. Crosson, S. Rajagopal, K. Moffat, The LOV domain family: photoresponsive signaling modules coupled to diverse output domains, Biochemistry, 2003, 42, 2–10.

    Article  CAS  PubMed  Google Scholar 

  28. N. C. Rockwell, Y. S. Su, J. C. Lagarias, Phytochrome structure and signaling mechanisms, Annu. Rev. Plant Biol., 2006, 57, 837–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. M. Christie, P. Reymond, G. K. Powell, P. Bernasconi, A. A. Raibekas, E. Liscum, W. R. Briggs, Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism, Science, 1998, 282, 1698–1701.

    Article  CAS  PubMed  Google Scholar 

  30. B. L. Taylor, I. B. Zhulin, PAS domains: internal sensors of oxygen, redox potential, and light, Microbiol. Mol. Biol. Rev., 1999, 63, 479–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Salomon, W. Eisenreich, H. Dürr, E. Schleicher, E. Knieb, V. Massey, W. Rüdiger, F. Müller, A. Bacher, G. Richter, An optomechanical transducer in the blue light receptor phototropin from Avena sativa, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 12357–12361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Drepper, T. Eggert, F. Circolone, A. Heck, U. Krauss, J. K. Guterl, M. Wendorff, A. Losi, W. Gärtner, K. E. Jaeger, Reporter proteins for in vivo fluorescence without oxygen, Nat. Biotechnol., 2007, 25, 443–445.

    Article  CAS  PubMed  Google Scholar 

  33. S. Chapman, C. Faulkner, E. Kaiserli, C. Garcia-Mata, E. I. Savenkov, A. G. Roberts, K. J. Oparka, J. M. Christie, The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 20038–20043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. B. D. Zoltowski, C. Schwerdtfeger, J. Widom, J. J. Loros, A. M. Bilwes, J. C. Dunlap, B. R. Crane, Conformational switching in the fungal light sensor Vivid, Science, 2007, 316, 1054–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Möglich, K. Moffat, Structural Basis for Light-dependent Signaling in the Dimeric LOV Domain of the Photosensor YtvA, J. Mol. Biol., 2007, 373, 112–126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. A. Möglich, R. A. Ayers, K. Moffat, Design and Signaling Mechanism of Light-regulated Histidine Kinases, J. Mol. Biol., 2009, 385, 1433–1444.

    Article  PubMed  CAS  Google Scholar 

  37. M. Avila Pérez, J. Vreede, Y. Tang, O. Bende, A. Losi, W. Gärtner, K. J. Hellingwerf, In vivo mutational analysis of YtvA from bacillus subtilis: Mechanism of light-activation of the general stress response, J. Biol. Chem., 2009, 284, 24958–24964.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. S. M. Harper, L. C. Neil, K. H. Gardner, Structural basis of a phototropin light switch, Science, 2003, 301, 1541–1544.

    Article  CAS  PubMed  Google Scholar 

  39. J. T. Kennis, I. H. van Stokkum, S. Crosson, M. Gauden, K. Moffat, R. van Grondelle, The LOV2 domain of phototropin: a reversible photochromic switch, J. Am. Chem. Soc., 2004, 126, 4512–4513.

    Article  CAS  PubMed  Google Scholar 

  40. J. R. Wagner, J. S. Brunzelle, K. T. Forest, R. D. Vierstra, A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome, Nature, 2005, 438, 325–331.

    Article  CAS  PubMed  Google Scholar 

  41. L. O. Essen, J. Mailliet, J. Hughes, The structure of a complete phytochrome sensory module in the Pr ground state, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 14709–14714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. X. Yang, J. Kuk, K. Moffat, Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 14715–14720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Y. Ho, L. M. Burden, J. H. Hurley, Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor, EMBO J., 2000, 19, 5288–5299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. A. T. Ulijasz, G. Cornilescu, C. C. Cornilescu, J. Zhang, M. Rivera, J. L. Markley, R. D. Vierstra, Structural basis for the photoconversion of a phytochrome to the activated Pfr form, Nature, 2010, 463, 250–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. A. J. Fischer, J. C. Lagarias, Harnessing phytochrome’s glowing potential, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 17334–17339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, R. Y. Tsien, Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome, Science, 2009, 324, 804–807.

    Article  PubMed  PubMed Central  Google Scholar 

  47. K. C. Toh, E. A. Stojkovic, I. H. M. van Stokkum, K. Moffat, J. T. M. Kennis, Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 9170–9175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. L. Aravind, L. M. Iyer, and V. Anantharaman, in Sensory Mechanisms in Bacteria: Molecular Aspects of Signal Recognition, ed. S. Spiro and R. Dixon, Horizon Scientific Press, Norwich, UK, 2010.

  49. B. D. Zoltowski, B. Vaccaro, B. R. Crane, Mechanism-based tuning of a LOV domain photoreceptor, Nat. Chem. Biol., 2009, 5, 827–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M. T. Alexandre, J. C. Arents, R. van Grondelle, K. J. Hellingwerf, J. T. Kennis, A base-catalyzed mechanism for dark state recovery in the Avena sativa phototropin-1 LOV2 domain, Biochemistry, 2007, 46, 3129–3137.

    Article  CAS  PubMed  Google Scholar 

  51. J. M. Christie, S. B. Corchnoy, T. E. Swartz, M. Hokenson, I. S. Han, W. R. Briggs, R. A. Bogomolni, Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1, Biochemistry, 2007, 46, 9310–9319.

    Article  CAS  PubMed  Google Scholar 

  52. Y. Chung, S. Masuda, C. E. Bauer, Purification and reconstitution of PYP-phytochrome with biliverdin and 4-hydroxycinnamic acid, Methods Enzymol., 2007, 422, 184–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. T. R. Barends, E. Hartmann, J. J. Griese, T. Beitlich, N. V. Kirienko, D. A. Ryjenkov, J. Reinstein, R. L. Shoeman, M. Gomelsky, I. Schlichting, Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase, Nature, 2009, 459, 1015–1018.

    Article  CAS  PubMed  Google Scholar 

  54. Y. I. Wu, D. Frey, O. I. Lungu, A. Jaehrig, I. Schlichting, B. Kuhlman, K. M. Hahn, A genetically encoded photoactivatable Rac controls the motility of living cells, Nature, 2009, 461, 104–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. D. Strickland, X. Yao, G. Gawlak, M. K. Rosen, K. H. Gardner, T. R. Sosnick, Rationally improving LOV domain-based photoswitches, Nat. Methods, 2010, 7, 623–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. V. Buttani, A. Losi, T. Eggert, U. Krauss, K. E. Jaeger, Z. Cao, W. Gärtner, Conformational analysis of the blue-light sensing protein YtvA reveals a competitive interface for LOV-LOV dimerization and interdomain interactions, Photochem. Photobiol. Sci., 2007, 6, 41–49.

    Article  CAS  PubMed  Google Scholar 

  57. A. Möglich, R. A. Ayers, K. Moffat, Addition at the Molecular Level: Signal Integration in Designed Per-ARNT-Sim Receptor Proteins, J. Mol. Biol., 2010, 400, 477–486.

    Article  PubMed  CAS  Google Scholar 

  58. D. Strickland, K. Moffat, T. R. Sosnick, Light-activated DNA binding in a designed allosteric protein, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 10709–10714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. A. Levskaya, O. D. Weiner, W. A. Lim, C. A. Voigt, Spatiotemporal control of cell signalling using a light-switchable protein interaction, Nature, 2009, 461, 997–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. A. Joachimiak, R. L. Kelley, R. P. Gunsalus, C. Yanofsky, P. B. Sigler, Purification and characterization of trp aporepressor, Proc. Natl. Acad. Sci. U. S. A., 1983, 80, 668–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. J. Lee, M. Natarajan, V. C. Nashine, M. Socolich, T. Vo, W. P. Russ, S. J. Benkovic, R. Ranganathan, Surface sites for engineering allosteric control in proteins, Science, 2008, 322, 438–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. S. W. Lockless, R. Ranganathan, Evolutionarily conserved pathways of energetic connectivity in protein families, Science, 1999, 286, 295–299.

    Article  CAS  PubMed  Google Scholar 

  63. S. K. Yoo, Q. Deng, P. J. Cavnar, Y. I. Wu, K. M. Hahn, A. Huttenlocher, Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish, Dev. Cell, 2010, 18, 226–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. X. Wang, L. He, Y. I. Wu, K. M. Hahn, D. J. Montell, Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo, Nat. Cell Biol., 2010, 12, 591–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. M. Hulko, F. Berndt, M. Gruber, J. U. Linder, V. Truffault, A. Schultz, J. Martin, J. E. Schultz, A. N. Lupas, M. Coles, The HAMP domain structure implies helix rotation in transmembrane signaling, Cell, 2006, 126, 929–940.

    Article  CAS  PubMed  Google Scholar 

  66. A. Marina, C. D. Waldburger, W. A. Hendrickson, Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein, EMBO J., 2005, 24, 4247–4259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. P. Casino, V. Rubio, A. Marina, Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction, Cell, 2009, 139, 325–336.

    Article  CAS  PubMed  Google Scholar 

  68. D. Albanesi, M. Martín, F. Trajtenberg, M. C. Mansilla, A. Haouz, P. M. Alzari, D. de Mendoza, A. Buschiazzo, Structural plasticity and catalysis regulation of a thermosensor histidine kinase, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 16185–16190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. S. Yamada, H. Sugimoto, M. Kobayashi, A. Ohno, H. Nakamura, Y. Shiro, Structure of PAS-linked histidine kinase and the response regulator complex, Structure, 2009, 17, 1333–1344.

    Article  CAS  PubMed  Google Scholar 

  70. U. Krauss, J. Lee, S. J. Benkovic, K. Jaeger, LOVely enzymes - towards engineering light-controllable biocatalysts, Microb. Biotechnol., 2010, 3, 15–23.

    Article  CAS  PubMed  Google Scholar 

  71. M. Yazawa, A. M. Sadaghiani, B. Hsueh, R. E. Dolmetsch, Induction of protein-protein interactions in live cells using light, Nat. Biotechnol., 2009, 27, 941–945.

    Article  CAS  PubMed  Google Scholar 

  72. S. Shimizu-Sato, E. Huq, J. M. Tepperman, P. H. Quail, A light-switchable gene promoter system, Nat. Biotechnol., 2002, 20, 1041–1044.

    Article  CAS  PubMed  Google Scholar 

  73. D. W. Leung, C. Otomo, J. Chory, M. K. Rosen, Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 12797–12802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. A. B. Tyszkiewicz, T. W. Muir, Activation of protein splicing with light in yeast, Nat. Methods, 2008, 5, 303–305.

    Article  CAS  PubMed  Google Scholar 

  75. A. Levskaya, A. A. Chevalier, J. Tabor, Z. B. Simpson, L. A. Lavery, M. Levy, E. A. Davidson, A. Scouras, A. D. Ellington, E. M. Marcotte, C. A. Voigt, Synthetic biology: engineering Escherichia coli to see light, Nature, 2005, 438, 441–442.

    Article  CAS  PubMed  Google Scholar 

  76. S. Morgan, S. Al-Abdul-Wahid, G. A. Woolley, Structure-Based Design of a Photocontrolled DNA Binding Protein, J. Mol. Biol., 2010, 399, 94–112.

    Article  CAS  PubMed  Google Scholar 

  77. D. M. Chudakov, V. V. Verkhusha, D. B. Staroverov, E. A. Souslova, S. Lukyanov, K. A. Lukyanov, Photoswitchable cyan fluorescent protein for protein tracking, Nat. Biotechnol., 2004, 22, 1435–1439.

    Article  CAS  PubMed  Google Scholar 

  78. P. S. Lagali, D. Balya, G. B. Awatramani, T. A. Munch, D. S. Kim, V. Busskamp, C. L. Cepko, B. Roska, Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration, Nat. Neurosci., 2008, 11, 667–675.

    Article  CAS  PubMed  Google Scholar 

  79. A. S. Halavaty, K. Moffat, N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa, Biochemistry, 2007, 46, 14001–14009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Möglich.

Additional information

This article is published as part of a themed issue on photofunctional proteins: from understanding to engineering.

‡ Electronic supplementary information (ESI) available. See DOI: 10.1039/c0pp00167h

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möglich, A., Moffat, K. Engineered photoreceptors as novel optogenetic tools. Photochem Photobiol Sci 9, 1286–1300 (2010). https://doi.org/10.1039/c0pp00167h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00167h

Navigation