Skip to main content
Log in

Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria: cDNA cloning, expression, and characterization of novel recombinant protein

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The bioluminescent systems of many marine organisms are comprised of two proteins—the Ca2+-regulated photoprotein and green-fluorescent protein (GFP). This work reports the cloning of the full-size cDNA encoding GFP (cgreGFP) from jellyfish Clytia gregaria, its expression and properties of the recombinant protein. The overall degree of identity between the amino acid sequence of the novel cgreGFP and the sequence of GFP (avGFP) from Aequorea victoria is 42% (similarity–64%) despite these GFPs originating from jellyfish that both belong to the same class, Hydrozoa. However although the degree of identity is low, three residues, Ser-Tyr-Gly, which form the chromophore are identical in both GFPs. The cgreGFP displayed two absorption peaks at 278 and 485 nm, and the fluorescence maximum at 500 nm. The fluorescence quantum yield was determined to be 0.86, the brightness to be 54 mM−1 cm−1. For the first time we have also demonstrated an efficient radiationless energy transfer in vitro between clytin and cgreGFP in solution at micromolar concentrations. The cgreGFP may be a useful intracellular fluorescent marker, as it was able to be expressed in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Shimomura, Bioluminescence: Chemical Principles and Methods, World Scientific Publishing Co., Singapore, 2006.

    Book  Google Scholar 

  2. O. Shimomura, F. H. Johnson and Y. Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea, J. Cell. Comp. Physiol., 1962, 59, 223–239.

    Article  CAS  Google Scholar 

  3. D. G. Allen, J. R. Blinks and F. G. Prendergast, Aequorin luminescence: relation of light emission to calcium concentration–a calcium-independent component, Science, 1977, 195, 996–998.

    Article  CAS  Google Scholar 

  4. O. Shimomura and F. H. Johnson, Structure of the light-emitting moiety of aequorin, Biochemistry, 1972, 11, 1602–1608.

    Article  CAS  Google Scholar 

  5. M. J. Cormier, K. Hori, Y. D. Karkhanis, J. M. Anderson, J. E. Wampler, J. G. Morin and J. W. Hastings, Evidence for similar biochemical requirements for bioluminescence among the coelenterates, J. Cell. Physiol., 1973, 81, 291–297.

    Article  CAS  Google Scholar 

  6. E. S. Vysotski and J. Lee, Ca2+-regulated photoproteins: structural insight into the bioluminescence mechanism, Acc. Chem. Res., 2004, 37, 405–415.

    Article  CAS  Google Scholar 

  7. J. G. Morin, in Coelenterate Biology: Reviews and New Perspectives, ed. L. Muscatine and H. M. Lenhoff, Academic Press, New York, 1974, pp. 397–438

  8. J. G. Morin and J. W. Hastings, Energy transfer in a bioluminescent system, J. Cell. Physiol., 1971, 77, 313–318.

    Article  CAS  Google Scholar 

  9. M. J. Cormier, in Bioluminescence in Action, ed. P. J. Herring, Academic Press, London, 1978, pp. 75–108

  10. W. W. Ward, in Photochemical and Photobiological Reviews, ed. K. C. Smith, Plenum Press, New York, 1979, Vol. 4, pp. 1–57

  11. P. J. Herring, The spectral characteristics of luminous marine organisms, Proc. R. Soc. London, Ser. B, 1983, 220, 183–217.

    Article  Google Scholar 

  12. D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast and M. J. Cormier, Primary structure of the Aequorea victoria green-fluorescent protein, Gene, 1992, 111, 229–233.

    Article  CAS  Google Scholar 

  13. N. S. Xia, W. X. Luo, J. Zhang, X. Y. Xie, H. J. Yang, S. W. Li, M. Chen and M. H. Ng, Bioluminescence of Aequorea macrodactyla, a common jellyfish species in the East China Sea, Mar. Biotechnol., 2002, 4, 155–162.

    Article  CAS  Google Scholar 

  14. N. G. Gurskaya, A. F. Fradkov, N. I. Pounkova, D. B. Staroverov, M. E. Bulina, Y. G. Yanushevich, Y. A. Labas, S. Lukyanov and K. A. Lukyanov, A colorless green fluorescent protein homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants, Biochem. J., 2003, 373, 403–408.

    Article  CAS  Google Scholar 

  15. R. Y. Tsien, The green fluorescent protein, Annu. Rev. Biochem., 1998, 67, 509–544.

    Article  CAS  Google Scholar 

  16. R. Y. Tsien, Creating new fluorescent probes for cell biology, Nat. Rev. Mol. Cell Biol., 2002, 3, 906–918.

    Article  Google Scholar 

  17. Y. A. Labas, N. G. Gurskaya, Y. G. Yanushevich, A. F. Fradkov, K. A. Lukyanov, S. A. Lukyanov and M. V. Matz, Diversity and evolution of the green fluorescent protein family, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4256–4261.

    Article  CAS  Google Scholar 

  18. S. Inouye and F. I. Tsuji, Cloning and sequence analysis of cDNA for the Ca2+-activated photoprotein, clytin, FEBS Lett., 1993, 315, 343–346.

    Article  CAS  Google Scholar 

  19. S. Inouye, Cloning, expression, purification and characterization of an isotype of clytin, a calcium-binding photoprotein from the luminous hydromedusa Clytia gregarium, J. Biochem., 2008, 143, 711–717.

    Article  CAS  Google Scholar 

  20. W. W. Ward and M. J. Cormier, In vitro energy transfer in Renilla bioluminescence, J. Phys. Chem., 1976, 80, 2289–2291.

    Article  CAS  Google Scholar 

  21. W. W. Ward and M. J. Cormier, Energy transfer via protein-protein interaction in Renilla bioluminescence, Photochem. Photobiol., 1978, 27, 389–396.

    Article  CAS  Google Scholar 

  22. W. W. Ward and M. J. Cormier, An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green fluorescent protein, J. Biol. Chem., 1979, 254, 781–788.

    Article  CAS  Google Scholar 

  23. S. V. Markova, E. S. Vysotski and J. Lee, in Bioluminescence and Chemiluminescence 2000, ed. J. F. Case, P. J. Herring, B. H. Robison, S. H. D. Haddock, L. J. Kricka and P. E. Stanley, World Scientific, Singapore, 2001, pp. 115–118

  24. B. A. Illarionov, L. A. Frank, V. A. Illarionova, V. S. Bondar, E. S. Vysotski and J. R. Blinks, Recombinant obelin: cloning and expression of cDNA, purification and characterization as a calcium indicator, Methods Enzymol., 2000, 305, 223–249.

    Article  CAS  Google Scholar 

  25. E. S. Vysotski, Z. J. Liu, J. Rose, B. C. Wang and J. Lee, Preparation and X-ray crystallographic analysis of recombinant obelin crystals diffracting to beyond 1.1 Å, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2001, 57, 1919–1921.

    Article  CAS  Google Scholar 

  26. M. E. Gasparian, V. G. Ostapchenko, A. A. Schulga, D. A. Dolgih and M. P. Kirpichikov, Expression, purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli, Protein Expression Purif., 2003, 31, 133–139.

    Article  CAS  Google Scholar 

  27. G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison and G. W. Robinson, Picosecond fluorescence studies of xanthene dyes, J. Am. Chem. Soc., 1977, 99, 4306–4311.

    Article  CAS  Google Scholar 

  28. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Third Edition, Springer, Singapore, 2006.

    Book  Google Scholar 

  29. N. C. Shaner, P. A. Steinbach and R. Y. Tsien, A guide to choosing fluorescent proteins, Nat. Methods, 2005, 2, 905–909.

    Article  CAS  Google Scholar 

  30. E. M. Phizicky and S. Fields, Protein-protein interactions: Methods for detection and analysis, Microbiol. Rev., 1995, 59, 94–123.

    Article  CAS  Google Scholar 

  31. J. Sambrook, E. F. Fritsch and T. Maniatis, Molecular Cloning: A Laboratory Manual, 2nd edn, Cold Spring Harbor Laboratory Press, NY, 1989.

    Google Scholar 

  32. T. A. Brown, Essential Molecular Biology I: A Practical Approach Series, IRL Press, Oxford, 1990.

    Google Scholar 

  33. S. Inouye, M. Noguchi, Y. Sakaki, Y. Takagi, T. Miyata, S. Iwanaga, T. Miyata and F. I. Tsuji, Cloning and sequence analysis of cDNA for the luminescent protein aequorin, Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 3154–3158.

    Article  CAS  Google Scholar 

  34. D. C. Prasher, R. O. McCann, M. Longiaru and M. J. Cormier, Sequence comparisons of complementary DNAs encoding aequorin isotypes, Biochemistry, 1987, 26, 1326–1332.

    Article  CAS  Google Scholar 

  35. O. Shimomura, Isolation and properties of various molecular forms of aequorin, Biochem. J., 1986, 234, 271–277.

    Article  CAS  Google Scholar 

  36. S. V. Markova, E. S. Vysotski, J. R. Blinks, L. P. Burakova, B. C. Wang and J. Lee, Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins, Biochemistry, 2002, 41, 2227–2236.

    Article  CAS  Google Scholar 

  37. S. Inouye and Y. Sahara, Expression, purification and characterization of a photoprotein, clytin, from Clytia gregarium, Protein Expression Purif., 2007, 53, 384–389.

    Article  CAS  Google Scholar 

  38. L. D. Levine and W. W. Ward, Isolation and characterization of a photoprotein “phialidin”, and a spectrally unique green-fluorescent protein from the bioluminescent jellyfish Phialidium gregarium, Comp. Biochem. Physiol, 1982, 72B, 77–85.

    CAS  Google Scholar 

  39. M. Chattoraj, B. A. King, G. U. Bublitz and S. G. Boxer, Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 8362–8367.

    Article  CAS  Google Scholar 

  40. J. F. Head, S. Inouye, K. Teranishi and O. Shimomura, The crystal structure of the photoprotein aequorin at 2.3 Å resolution, Nature, 2000, 405, 372–376.

    Article  CAS  Google Scholar 

  41. Z. J. Liu, E. S. Vysotski, C. J. Chen, J. P. Rose, J. Lee and B. C. Wang, Structure of the Ca2+-regulated photoprotein obelin at 1.7Å resolution determined directly from its sulfur substructure, Protein Sci., 2000, 9, 2085–2093.

    Article  CAS  Google Scholar 

  42. Z. J. Liu, G. A. Stepanyuk, E. S. Vysotski, J. Lee, S. V. Markova, N. P. Malikova and B. C. Wang, Crystal structure of obelin after Ca2+-triggered bioluminescence suggests neutral coelenteramide as the primary excited state, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 2570–2575.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene S. Vysotski.

Additional information

Electronic supplementary information (ESI) available: Fig. S1, S2, and S3. See DOI: 10.1039/c0pp00023j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markova, S.V., Burakova, L.P., Frank, L.A. et al. Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria: cDNA cloning, expression, and characterization of novel recombinant protein. Photochem Photobiol Sci 9, 757–765 (2010). https://doi.org/10.1039/c0pp00023j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00023j

Navigation