Issue 35, 2010

Metallophosphors of platinum with distinct main-group elements: a versatile approach towards color tuning and white-light emission with superior efficiency/color quality/brightness trade-offs

Abstract

A new series of phosphorescent platinum(II) cyclometalated complexes with distinct electronic structures has been developed by simple tailoring of the phenyl ring of ppy (Hppy = 2-phenylpyridine) with various main-group moieties in [Pt(ppy-X)(acac)] (X = B(Mes)2, SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph substituted at the para position). Their distinctive electronic characters, resulting in improved hole-injection/hole-transporting or electron-injection/electron-transporting features, have confined/consumed the electrons in the emission layer of organic light-emitting diodes (OLEDs) to achieve good color purity and high efficiency of the devices. The maximum external quantum efficiency of 9.52%, luminance efficiency of 30.00 cd A−1 and power efficiency of 8.36 lm W−1 for the OLEDs with Pt-B (X = B(Mes)2) as the emitter, 8.50%, 29.74 cd A−1 and 19.73 lm W−1 for the device with Pt-N (X = NPh2), 7.92%, 22.06 cd A−1 and 13.64 lm W−1 for the device with Pt-PO (X = POPh2) as well as 8.35%, 19.59 cd A−1 and 7.83 lm W−1 for the device with Pt-SO2 (X = SO2Ph) can be obtained. By taking advantage of the unique electronic structures of the Pt-Ge (X = GePh3) and Pt-O (X = OPh) green emitters and the intrinsic property of blue-emitting hole-transport layer of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), single-dopant white OLEDs (WOLEDs) can be developed. These simple WOLEDs emit white light of very high quality (CIE at (0.354, 0.360), CRI of ca. 97 and CCT at 4719 K) even at high brightness (>15000 cd m−2) and the present work represents significant progress to address the bottle-neck problem of WOLEDs for the efficiency/color quality/brightness trade-off optimization that is necessary for pure white light of great commercial value.

Graphical abstract: Metallophosphors of platinum with distinct main-group elements: a versatile approach towards color tuning and white-light emission with superior efficiency/color quality/brightness trade-offs

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2010
Accepted
12 Jun 2010
First published
20 Jul 2010

J. Mater. Chem., 2010,20, 7472-7484

Metallophosphors of platinum with distinct main-group elements: a versatile approach towards color tuning and white-light emission with superior efficiency/color quality/brightness trade-offs

G. Zhou, Q. Wang, X. Wang, C. Ho, W. Wong, D. Ma, L. Wang and Z. Lin, J. Mater. Chem., 2010, 20, 7472 DOI: 10.1039/C0JM01159B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements