Issue 17, 2011

Confined ultrafast torsional dynamics of Thioflavin-T in a nanocavity

Abstract

The influence of confinement in the supramolecular β-cyclodextrin nanocavity on the excited state torsional dynamics of the amyloid fibril sensor, Thioflavin-T, is explored using subpicosecond fluorescence up-conversion spectroscopy. In the presence of β-cyclodextrin, the emission intensity and the fluorescence lifetime of Thioflavin-T significantly increases, indicating the confinement effect of the nanocage on the photophysical behaviour of the dye. Detailed time-resolved fluorescence studies show an appreciable dynamic Stokes' shift for the dye in the β-cyclodextrin nanocavity. Analysis of the time-resolved area normalized emission spectra (TRANES) indicates the formation of an emissive TICT state. The rate of formation of the TICT state, as calculated from the time dependent changes in the peak frequency and the width of the emission spectra, is found to be substantially slower in the β-cyclodextrin nanocavity compared to that in bulk water. Present results indicate that ultrafast torsional motion in Thioflavin-T is significantly retarded due to confinement by the β-cyclodextrin nanocavity.

Graphical abstract: Confined ultrafast torsional dynamics of Thioflavin-T in a nanocavity

Article information

Article type
Paper
Submitted
23 Nov 2010
Accepted
04 Mar 2011
First published
29 Mar 2011

Phys. Chem. Chem. Phys., 2011,13, 8008-8014

Confined ultrafast torsional dynamics of Thioflavin-T in a nanocavity

P. K. Singh, M. Kumbhakar, H. Pal and S. Nath, Phys. Chem. Chem. Phys., 2011, 13, 8008 DOI: 10.1039/C0CP02635B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements