Skip to main content
Log in

Cucurbituril complexes cross the cell membrane

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Cucurbiturils (CBs) of the appropriate size (CB[7] and CB[8]) form strong guest- host complexes in phosphate buffer solution (PBS) with acridine orange (AO) and pyronine Y (PYY) with 1:1 and 2:1 stoichiometries for CB[7] and CB[8] complexes, respectively. Binding constants in the range 0.87-1.60 × 106 M-1 and 5.2-6.3 × 1013 M-2 were determined by titration withfluorescence spectroscopy for 1:1 and 2:1 complexes, respectively. These binding constants in PBS and the eight-fold excess of CBs minimize the presence of free dye in solution and also stabilize the host -guest complex in the culture medium. Images showing that the CB complexes can cross the cell membrane of 3T3 cells have been acquired using fluorescence microscopy. Given the current importance of supramolecular CB complexes and the search for new drug delivery systems, the present findings open avenues for the use of CBs as nanocapsules to transport drugs into the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. T. Daemen, R. Hoedemakers, G. Storm, G. L. Scherphof, Opportunities in targeted drug delivery to Kupffer cells: delivery of immunomodulators to Kupffer cells-activation of tumoricidal properties, Adv. Drug Delivery Rev., 1995, 17, 21–30.

    Article  CAS  Google Scholar 

  2. F. Stieneker, J. Kreuter, Nanoparticles as a Potential Antigen Delivery System, ACS Symp. Ser., 1994, 567, 306–321.

    Article  CAS  Google Scholar 

  3. J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, The Cucurbit[n]uril Family, Angew. Chem., Int. Ed., 2005, 44, 4844–4870.

    Article  CAS  Google Scholar 

  4. G. V. Oshovsky, D. N. Reinhoudt, W. Verboom, Supramolecular Chemistry in Water, Angew. Chem., Int. Ed., 2007, 46, 2366–2393.

    Article  CAS  Google Scholar 

  5. J. W. Lee, S. Samal, N. Selvapalam, H. J. Kim, K. Kim, Cucurbituril Homologues and Derivatives: New Opportunities in Supramolecular Chemistry, Acc. Chem. Res., 2003, 36, 621–630.

    Article  CAS  Google Scholar 

  6. W. L. Mock, Cucurbituril, Top. Curr. Chem., 1995, 175, 1–24.

    Article  CAS  Google Scholar 

  7. D. A. Rudkevich, Nanoscale Molecular Containers, Bull. Chem. Soc. Jpn., 2002, 75, 393–413.

    Article  CAS  Google Scholar 

  8. B. D. Wagner, N. Stojanovic, A. I. Day, R. J. Blanch, Host Properties of Cucurbit[7]uril: Fluorescence Enhancement of Anilinonaphthalene Sulfonates, J. Phys. Chem. B, 2003, 107, 10741–10746.

    Article  CAS  Google Scholar 

  9. W. L. Mock, N. Y. Shih, Structure and selectivity in host-guest complexes of cucurbituril, J. Org. Chem., 1986, 51, 4440–4446.

    Article  CAS  Google Scholar 

  10. P. Montes-Navajas, H. Garcia, Complexes of basic tricyclic dyes in their acid and basic forms with cucurbit[7]uril: Determination of pKa and association constants in the ground and singlet excited state, J. Photochem. Photobiol., A, 2009, 204, 97–101.

    Article  CAS  Google Scholar 

  11. N. J. Wheate, Improving platinum(II)-based anticancer drug delivery using cucurbit[n]urils, J. Inorg. Biochem., 2008, 102, 2060–2066.

    Article  CAS  Google Scholar 

  12. Y. J. Jeon, S-Y. Kim, Y. H. Ko, S. Sakamoto, K. Yamaguchi, K. Kim, Novel molecular drug carrier: encapsulation of oxiliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug, Org. Biomol. Chem., 2005, 3, 2122–2125.

    Article  CAS  Google Scholar 

  13. K. M. Park, K. Suh, H. Jung, D.-W. Lee, Y. Ahn, J. Kim, K. Baek, K. Kim, Cucurbituril-based nanoparticles: a new efficient vehicle for targeted intracellular delivery of hydrophobic drugs, Chem. Commun., 2009, 71–73.

    Google Scholar 

  14. A. L. Koner, W. M. Nau, Cucurbituril Encapsulation of Fluorescent Dyes, Supramol. Chem., 2007, 19, 55–66.

    Article  CAS  Google Scholar 

  15. W. M. Nau, J. Mohanty, Taming fluorescent dyes with cucurbituril, Int. J. Photoenergy, 2005, 7, 133–141.

    Article  CAS  Google Scholar 

  16. P. Montes-Navajas, A. Corma, H. Garcia, Complexation and Fluorescence of Tricyclic Basic Dyes Encapsulated in Cucurbiturils, ChemPhysChem, 2008, 9, 713–720.

    Article  CAS  Google Scholar 

  17. J. W. Dobrucki, D. Feret, A. Noatynska, Scattering of Exciting Light by Live Cells in Fluorescence Confocal Imaging: Phototoxic Effects and Relevance for FRAP Studies, Biophys. J., 2007, 93, 1778–1786.

    Article  CAS  Google Scholar 

  18. K. Toba, E. F. Winton, T. Koika, A. Shibata, Simultaneous three-color analysis of the surface phenotype and DNA-RNA quantitation using 7-amino-actinomycin D and pyronin Y, J. Immunol. Methods, 1995, 182, 193–207.

    Article  CAS  Google Scholar 

  19. S. Paglin, T. Hollister, T. Delohery, N. Hacket, M. McMahill, E. Sphicas, D. Domingo, J. Yahalom, A Novel Response of Cancer Cells to Radiation Involves Autophagy and Formation of Acidic Vesicles, Cancer Res., 2001, 182, 439–444.

    Google Scholar 

  20. D. A. Phoenix, Z. Sayed, S. Hussain, F. Harris, M. Wainright, The phototoxicity of phenothiazinium derivatives againstEscherichia coli andStaphylococcus aureus, FEMS Immunol. Med. Microbiol., 2003, 39, 17–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Scaiano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montes-Navajas, P., González-Béjar, M., Scaiano, J.C. et al. Cucurbituril complexes cross the cell membrane. Photochem Photobiol Sci 8, 1743–1747 (2009). https://doi.org/10.1039/b9pp00041k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00041k

Navigation