Skip to main content
Log in

Fluence rate-dependent intratumor heterogeneity in physiologic and cytotoxic responses to Photofrin photodynamic therapy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) can lead to the creation of heterogeneous, response-limiting hypoxia during illumination, which may be controlled in part through illumination fluence rate. In the present report we consider (1) regional differences in hypoxia, vascular response, and cell kill as a function of tumor depth and (2) the role of fluence rate as a mediator of depth-dependent regional intratumor heterogeneity. Intradermal RIF murine tumors were treated with Photofrin PDT using surface illumination at an irradiance of 75 or 38 mW cm-2. Regional heterogeneity in tumor response was examined through comparison of effects in the surfacevs. base of tumors, i.e. along a plane parallel to the skin surface and perpendicular to the incident illumination. 75 mW cm-2 PDT created significantly greater hypoxia in tumor bases relative to their surfaces. Increased hypoxia in the tumor base could not be attributed to regional differences in Photofrin concentration nor effects of fluence rate distribution on photochemical oxygen consumption, but significant depth-dependent heterogeneity in vascular responses and cytotoxic response were detected. At a lower fluence rate of 38 mW cm-2, no detectable regional differences in hypoxia or cytotoxic responses were apparent, and heterogeneity in vascular response was significantly less than that during 75 mW cm-2 PDT. This research suggests that the benefits of low-fluence-rate PDT are mediated in part by a reduction in intratumor heterogeneity in hypoxic, vascular and cytotoxic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCS:

Diffuse correlation spectroscopy

EF3:

[(2-(2-Nitroimidazol-1H-yl)-N-(3,3,3-trifluoropropyl) acetamide)

HPPH:

2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a

PDT:

Photodynamic therapy

THC:

Total hemoglobin concentration

References

  1. S. Coutier, L. N. Bezdetnaya, T. H. Foster, R. M. Parache, F. Guillemin, Effect of irradiation fluence rate on the efficacy of photodynamic therapy and tumor oxygenation in meta-tetra (hydroxyphenyl) chlorin (mTHPC)-sensitized HT29 xenografts in nude mice, Radiat. Res., 2002, 158, 339–345.

    Article  CAS  Google Scholar 

  2. T. M. Sitnik, B. W. Henderson, The effect of fluence rate on tumor and normal tissue responses to photodynamic therapy, Photochem. Photobiol., 1998, 67, 462–466.

    Article  CAS  Google Scholar 

  3. E. Angell-Petersen, S. Spetalen, S. J. Madsen, C. H. Sun, Q. Peng, S. W. Carper, M. Sioud, H. Hirschberg, Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model, J. Neurosurg., 2006, 104, 109–117.

    Article  Google Scholar 

  4. T. M. Busch, E. P. Wileyto, M. J. Emanuele, F. Del Piero, L. Marconato, E. Glatstein, C. J. Koch, Photodynamic therapy creates fluence rate-dependent gradients in the intratumoral spatial distribution of oxygen, Cancer Res., 2002, 62, 7273–7279.

    PubMed  CAS  Google Scholar 

  5. B. W. Henderson, T. M. Busch, J. W. Snyder, Fluence rate as a modulator of PDT mechanisms, Lasers Surg. Med., 2006, 38, 489–493.

    Article  Google Scholar 

  6. S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model, Cancer Res., 1999, 59, 6164–6170.

    PubMed  CAS  Google Scholar 

  7. M. B. Ericson, C. Sandberg, B. Stenquist, F. Gudmundson, M. Karlsson, A. M. Ros, A. Rosen, O. Larko, A. M. Wennberg, I. Rosdahl, Photodynamic therapy of actinic keratosis at varying fluence rates: assessment of photobleaching, pain and primary clinical outcome, Br. J. Dermatol., 2004, 151, 1204–1212.

    Article  CAS  Google Scholar 

  8. B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, J. Morgan, Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors, Cancer Res., 2004, 64, 2120–2126.

    Article  CAS  Google Scholar 

  9. K. K. Wang, S. Mitra, T. H. Foster, A comprehensive mathematical model of microscopic dose deposition in photodynamic therapy, Med. Phys., 2007, 34, 282–293.

    Article  Google Scholar 

  10. H. W. Wang, T. C. Zhu, M. E. Putt, M. Solonenko, J. Metz, A. Dimofte, J. Miles, D. L. Fraker, E. Glatstein, S. M. Hahn, A. G. Yodh, Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy, J. Biomed. Opt., 2005, 10, 14004.

    Article  CAS  Google Scholar 

  11. C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction, J. Biomed. Opt., 2007, 12, 014025.

    Article  Google Scholar 

  12. S. Mitra, T. H. Foster, Carbogen breathing significantly enhances the penetration of red light in murine tumours in vivo, Phys. Med. Biol., 2004, 49, 1891–1904.

    Article  CAS  Google Scholar 

  13. T. M. Busch, E. P. Wileyto, S. M. Evans, C. J. Koch, Quantitative spatial analysis of hypoxia and vascular perfusion in tumor sections, Adv. Exp. Med. Biol., 2003, 510, 37–43.

    Article  Google Scholar 

  14. H.-W. Wang, E. Rickter, M. Yuan, E. P. Wileyto, E. Glatstein, A. Yodh, T. M. Busch, Effect of photosensitizer dose on fluence rate responses to photodynamic therapy, Photochem. Photobiol., 2007, 83, 1040–1048.

    Article  CAS  Google Scholar 

  15. H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome, Cancer Res., 2004, 64, 7553–7561.

    Article  CAS  Google Scholar 

  16. G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, T. M. Busch, Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy, Clin. Cancer Res., 2005, 11, 3543–3552.

    Article  CAS  Google Scholar 

  17. T. M. Busch, S. M. Hahn, E. P. Wileyto, C. J. Koch, D. L. Fraker, P. Zhang, M. Putt, K. Gleason, D. B. Shin, M. J. Emanuele, K. Jenkins, E. Glatstein, S. M. Evans, Hypoxia and Photofrin uptake in the intraperitoneal carcinomatosis and sarcomatosis of photodynamic therapy patients, Clin. Cancer Res., 2004, 10, 4630–4638.

    Article  CAS  Google Scholar 

  18. T. M. Sitnik, J. A. Hampton, B. W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate, Br. J. Cancer, 1998, 77, 1386–1394.

    Article  CAS  Google Scholar 

  19. M. Seshadri, J. A. Spernyak, R. Mazurchuk, S. H. Camacho, A. R. Oseroff, R. T. Cheney, D. A. Bellnier, Tumor vascular response to photodynamic therapy and the antivascular agent 5,6-dimethylxanthenone-4-acetic acid: implications for combination therapy, Clin. Cancer Res., 2005, 11, 4241–4250.

    Article  CAS  Google Scholar 

  20. K. P. Nielsen, A. Juzeniene, P. Juzenas, K. Stamnes, J. J. Stamnes, J. Moan, Choice of optimal wavelength for PDT: the significance of oxygen depletion, Photochem. Photobiol., 2005, 81, 1190–1194.

    Article  CAS  Google Scholar 

  21. A. R. Pries, A. J. Cornelissen, A. A. Sloot, M. Hinkeldey, M. R. Dreher, M. Hopfner, M. W. Dewhirst, T. W. Secomb, Structural adaptation and heterogeneity of normal and tumor microvascular networks, PLoS Comput. Biol., 2009, 5, e1000394.

    Article  CAS  Google Scholar 

  22. B. Chen, B. W. Pogue, P. J. Hoopes, T. Hasan, Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy, Int. J. Radiat. Oncol., Biol., Phys., 2005, 61, 1216–1226.

    Article  CAS  Google Scholar 

  23. B. Dome, S. Paku, B. Somlai, J. Timar, Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance, J. Pathol., 2002, 197, 355–362.

    Article  Google Scholar 

  24. Y. Pina, C. M. Cebulla, T. G. Murray, A. Alegret, S. R. Dubovy, H. Boutrid, W. Feuer, L. Mutapcic, M. E. Jockovich, Blood vessel maturation in human uveal melanoma: spatial distribution of neovessels and mature vasculature, Ophthalmic Res., 2009, 41, 160–169.

    Article  Google Scholar 

  25. S. Kupesic, A. Kurjak, Contrast-enhanced, three-dimensional power Doppler sonography for differentiation of adnexal masses, Obstet. Gynecol., 2000, 96, 452–458.

    PubMed  CAS  Google Scholar 

  26. J. A. Nagy, S. H. Chang, A. M. Dvorak, H. F. Dvorak, Why are tumour blood vessels abnormal and why is it important to know?, Br. J. Cancer, 2009, 100, 865–869.

    Article  CAS  Google Scholar 

  27. D. Fukumura, R. K. Jain, Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization, Microvasc. Res., 2007, 74, 72–84.

    Article  CAS  Google Scholar 

  28. J. H. Woodhams, A. J. Macrobert, S. G. Bown, The role of oxygen monitoring during photodynamic therapy and its potential for treatment dosimetry, Photochem. Photobiol. Sci., 2007, 6, 1246–1256.

    Article  CAS  Google Scholar 

  29. T. M. Busch, Local physiological changes during photodynamic therapy, Lasers Surg. Med., 2006, 38, 494–499.

    Article  Google Scholar 

  30. W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, A. R. Oseroff, Irradiance-dependent photobleaching and pain in delta-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas, Clin. Cancer Res., 2008, 14, 4475–4483.

    Article  CAS  Google Scholar 

  31. T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, R. Hilf, Oxygen consumption and diffusion effects in photodynamic therapy, Radiat. Res., 1991, 126, 296–303.

    Article  CAS  Google Scholar 

  32. M. Seshadri, D. A. Bellnier, L. A. Vaughan, J. A. Spernyak, R. Mazurchuk, T. H. Foster, B. W. Henderson, Light delivery over extended time periods enhances the effectiveness of photodynamic therapy, Clin. Cancer Res., 2008, 14, 2796–2805.

    Article  CAS  Google Scholar 

  33. T. M. Busch, S. M. Hahn, S. M. Evans, C. J. Koch, Depletion of tumor oxygenation during photodynamic therapy: detection by the hypoxia marker EF3 [2-(2-nitroimidazol-1[H]-yl)-N-(3,3,3,-trifluoropropyl)acetamide], Cancer Res., 2000, 60, 2636–2642.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa M. Busch.

Additional information

† Electronic supplementary information (ESI) available: Fig. S1 (fluence rate as a function of tumor depth); Fig. S2 (EF3 binding level). See DOI: 10.1039/b9pp00004f

‡ These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busch, T.M., Xing, X., Yu, G. et al. Fluence rate-dependent intratumor heterogeneity in physiologic and cytotoxic responses to Photofrin photodynamic therapy. Photochem Photobiol Sci 8, 1683–1693 (2009). https://doi.org/10.1039/b9pp00004f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00004f

Navigation