Skip to main content

Advertisement

Log in

Enhanced photocatalytic production of molecular hydrogen on TiO2 modified with Pt–polypyrrole nanocomposites

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Titanium dioxide was modified with Pt–polypyrrole nanocomposites through the in situ simultaneous reduction of Pt(iv) and the oxidative polymerization of pyrrole monomers at ambient temperature. The modified powders were characterized using X-ray photoelectron spectroscopy (XPS), dark-field scanning transmission electron microscopy (DF-STEM), infrared spectroscopy (IR) and by the determination of the BET surface area by nitrogen adsorption. Photocatalytic hydrogen production tests were performed employing 75 ml aqueous solution containing 2250 μmol methanol as the sacrificial electron donor. The obtained results show that 0.5 and 1.0 wt% Pt and polypyrrole, respectively, are the optimum ratios for high photocatalytic H2 production rates. The amount of H2 evolved during 5 h of UV-vis illumination of the suspension of Pt–polypyrrole modified TiO2 powder is three times higher than that obtained with Pt-loaded TiO2 prepared by a photochemical deposition method. The photonic efficiencies of the H2 production employing 75 ml aqueous solution containing 370 mmol methanol were calculated to be 10.6 ± 0.5 and 4.5 ± 0.2% for TiO2 modified with Pt–polypyrrole nanocomposites and for Pt-loaded TiO2 prepared by a photochemical deposition method, respectively. A synergistic effect between Ptnanoparticles and polypyrrole leading to a better separation of the charge carriers is proposed to explain the enhanced reactivity of the newly synthesized photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Rostrup-Nielsen, Fuels and energy for the future: the role of catalysis, Catal. Rev., 2004, 46, 247–270.

    Article  CAS  Google Scholar 

  2. W. W. Clark, II, and J. Rifkin, A green hydrogen economy, Energy Policy, 2006, 34, 2630–2639.

    Article  Google Scholar 

  3. K. Maeda, and K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light, J. Phys. Chem. C, 2007, 111, 7851–7861.

    Article  CAS  Google Scholar 

  4. A. Galińska, and J. Walendziewski, Photocatalytic water Splitting over Pt-TiO2 in the presence of sacrificial reagents, Energy Fuels, 2005, 19, 1143–1147.

    Article  CAS  Google Scholar 

  5. M. Kitano, K. Iyatani, K. Tsujimaru, M. Matsuoka, M. Takeuchi, M. Ueshima, J. M. Thomas, and M. Anpo, The effect of chemical etching by HF solution on the photocatalytic activity of visible Light-responsive TiO2 thin films for solar water splitting, Top. Catal., 2008, 49, 24–31.

    Article  CAS  Google Scholar 

  6. C. N. Hamelinck, A. P. C. Faaij, Future prospects for production of methanol and hydrogen from biomass, J. Power Sources, 2002, 111, 1–22.

    Article  CAS  Google Scholar 

  7. M. Park, and M. Kang, The preparation of the anatase and rutile forms of Ag–TiO2 and hydrogen production from methanol/water decomposition, Mater. Lett., 2008, 62, 183–187.

    Article  CAS  Google Scholar 

  8. G. Wu, T. Chena, W. Su, G. Zhou, X. Zong, Z. Lei, and C. Li, H2production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2catalyst, Int. J. Hydrogen Energy, 2008, 33, 1243–1251.

    Article  CAS  Google Scholar 

  9. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95, 69–96.

    Article  CAS  Google Scholar 

  10. D. Bahnemann, A. Henglein, J. Lilie, and L. Spanhel, Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal TiO2, J. Phys. Chem., 1984, 88, 709–711.

    Article  CAS  Google Scholar 

  11. D. Bahnemann, A. Henglein, and L. Spanhel, Detection of the intermediates of colloidal TiO2-catalysed photoreactions, Faraday Discuss. Chem. Soc., 1984, 78, 151–163.

    Article  CAS  Google Scholar 

  12. C. Wang, R. Pagel, D. W. Bahnemann, and J. K. Dohrmann, Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts: effect of intermittent illumination, platinization, and deoxygenation, J. Phys. Chem. B, 2004, 108, 14082–14092.

    Article  CAS  Google Scholar 

  13. J. Kiwi, M. Grätzel, Optimization of conditions for photochemical water cleavage. aqueous platinum/TiO2 (anatase) dispersions under ultraviolet light, J. Phys. Chem., 1984, 88, 1302–1307.

    Article  CAS  Google Scholar 

  14. H. Park, and W. Choi, Photocatalytic reactivities of nafion-coated TiO2 for the degradation of charged organic compounds under UV or visible light, J. Phys. Chem. B, 2005, 109, 11667–11674.

    Article  CAS  PubMed  Google Scholar 

  15. M. S. Vohra, and K. Tanaka, Enhanced photocatalytic activity of nafion-coated TiO2, Environ. Sci. Technol., 2001, 35, 411–415.

    Article  CAS  PubMed  Google Scholar 

  16. D. Chowdhury, A. Paul, and A. Chattopadhyay, Photocatalytic polypyrrole-TiO2-nanoparticles composite thin film generated at the air-water interface, Langmuir, 2005, 21, 4123–4128.

    Article  CAS  PubMed  Google Scholar 

  17. D. Wang, Y. Wang, X. Li, Q. Luo, J. An, and J. Yue, Sunlight photocatalytic activity of polypyrrole–TiO2 nanocomposites prepared by ‘in situ’ method, Catal. Commun., 2008, 9, 1162–1166.

    Article  CAS  Google Scholar 

  18. H. Park, and W. Choi, Visible-light-sensitized production of hydrogen using perfluorosulfonate polymer-coated TiO2 nanoparticles: An alternative approach to sensitizer anchoring, Langmuir, 2006, 22, 2906–2911.

    Article  CAS  PubMed  Google Scholar 

  19. R. J. Noufi, The incorporation of ruthenium oxide in polypyrrole films and the subsequent photooxidation of water at n-GaP photoelectrode, J. Electrochem. Soc., 1983, 130, 2126–2128.

    Article  CAS  Google Scholar 

  20. A. J. Frank, and K. Honda, Polymer-modified electrodes, catalysis and water splitting reactions, J. Photochem., 1985, 29, 195–204.

    Article  CAS  Google Scholar 

  21. G. Cooper, R. Noufi, A. J. Frank, and A. J. Nozik, Oxygen evolution on tantalum-polypyrrole-platinum anodes, Nature, 1982, 295, 578–580.

    Article  CAS  Google Scholar 

  22. A. Yildiz, A. Sobczynski, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, Sensitized polypyrrole-coated semiconducting powders as materials in photosystems for hydrogen generation, Langmuir, 1989, 5, 148–149.

    Article  CAS  Google Scholar 

  23. R. Abe, K. Sayama, and H. Sugihara, Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3/I, J. Phys. Chem. B, 2005, 109, 16052–16061.

    Article  CAS  PubMed  Google Scholar 

  24. P. R. Moses, L. M. Wier, J. C. Lennox, H. O. Finklea, J. R. Lenhard, and R. W. Murray, X-ray photoelectron spectroscopy of alkylamine-silanes bound to metal oxide electrodes, Anal. Chem., 1978, 50, 576–585.

    Article  CAS  Google Scholar 

  25. C. G. Hatchard, and C. A. Parker, A new sensitive chemical actinometer. II. Potassium, ferrioxalate as a standard chemical actinometer, Proc. R. Soc. Ser. A, 1956, 235, 518–536.

    CAS  Google Scholar 

  26. T. Nash, The colorimetric estimation of formaldehyde by means of the Hantzsch reaction, Biochemistry, 1953, 55, 416–421.

    CAS  Google Scholar 

  27. C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO2 and desert sand, Environ. Sci. Technol., 1988, 22, 798–806.

    Article  CAS  PubMed  Google Scholar 

  28. M. Zhao, and R. M. Crooks, Dendrimer-encapsulated Pt nanoparticles: synthesis, characterization, and applications to catalysis, Adv. Mater., 1999, 11, 217–220.

    Article  CAS  Google Scholar 

  29. H. Yang, T. Lu, K. Xue, S. Sun, G. Lu, and S. Chen, Electrocatalytic oxidation of methanol on polypyrrole film modified with platinum microparticles, J. Electrochem. Soc., 1997, 144, 2302–2307.

    Article  CAS  Google Scholar 

  30. S. Tamil Selvan, J. P. Spatz, H. Klok, Martin Möller, Gold-polypyrrole core-shell particles in diblock copolymer micelles, Adv. Mater., 1998, 10, 132–134.

    Article  Google Scholar 

  31. B. Tian, and G. Yerbi, Lattice dynamics and vibrational specra of polypyrrole, J. Chem. Phys., 1990, 92, 3886–3891.

    Article  CAS  Google Scholar 

  32. M. A. Fox, and K. L. Worthen, Comparison of the physical properties of polypyrrole produced by anodic oxidation and by photoelectrochemical activation of TiO2, Chem. Mater., 1991, 3, 253–257.

    Article  CAS  Google Scholar 

  33. S. Deki, H. Nishikawa, and M. Mizuhata, Fabrication of Pt nanoparticles-polypyrrole composite for electrocatalyst, Electrochemistry, 2004, 75, 415–417.

    Article  Google Scholar 

  34. J. Cheni, D. F. Ollis, W. H. Rulkens, and H. Bruning, Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part(II): Photocatalytic mechanisms, Water Res., 1999, 33, 669–676.

    Article  Google Scholar 

  35. C. Wang, J. Rabani, D. W. Bahnemann, and J. K. Dohrmann, Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts, J. Photochem. Photobiol. A, 2002, 148, 171–176.

    Article  Google Scholar 

  36. R. Gao, J. Stark, D. W. Bahnemann, and J. Rabani, Quantum yields of hydroxyl radicals in illuminated TiO2 nanocrystallite layers, J. Photochem. Photobiol. A, 2002, 148, 387–391.

    Article  CAS  Google Scholar 

  37. J. Marugan, D. Hufschmidt, M. J. Lopez-Munoz, V. Selzer, and D. Bahnemann, Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO2 photocatalysts, Appl. Catal., B, 2006, 62, 201–207.

    Article  CAS  Google Scholar 

  38. K. D. Asmus, H. Moeckel, and A. Henglein, Pulse radiolytic study of the site of hydroxyl radical attack on aliphatic alcohols in aqueous solution, J. Phys. Chem., 1973, 77, 1218–1221.

    Article  CAS  Google Scholar 

  39. C. von Sonntag, Free-radical-induced DNA damage and its repair. A chemical perspective.Springer-Verlag: Berlin, Heidelberg, New York, 2006, Chapter 7.

    Book  Google Scholar 

  40. Y. Nosaka, H. Sasaki, K. Norimatsu, and H. Miyama, Effect of surface compound formation on the photo-induced reaction at polycrystalline TiO2 semiconductor electrodes, Chem. Phys. Lett., 1984, 105, 456–458.

    Article  CAS  Google Scholar 

  41. N. Hykaway, W. M. Sears, H. Morisaki, and S. R. Morrison, Current-doubling reactions on titanium dioxide photoanodes, J. Phys. Chem., 1986, 90, 6663–6667.

    Article  CAS  Google Scholar 

  42. R. Memming, Top. Curr. Chem., 1994, 169, 105–181.

    Article  CAS  Google Scholar 

  43. G. Nogami, and J. H. Kennedy, Investigation of current doubling mechanisms of organic compounds by the rotating disk electrode technique, J. Electrochem. Soc., 1989, 136, 2583–2588.

    Article  CAS  Google Scholar 

  44. L. D. Burke, W. A. O’Leary, Electro-oxidation of formaldehyde at silver anodes–Role of submonolayer hydroxy complexes in noble metal electrocatalysis, J. Electrochem. Soc., 1988, 135, 1965–1970.

    Article  CAS  Google Scholar 

  45. W. Y. Teoh, L. Maedler, and A. Rose, Inter-relationship between Pt oxidation states on TiO2 and the photocatalytic mineralization of organic matters., J. Catal., 2007, 251, 271–280.

    Article  CAS  Google Scholar 

  46. T. L. Villarreal, R. Gomez, M. Neumann-Spallart, N. Alonso-Vante, and P. Salvador, Semiconductor photooxidation of pollutants dissolved in water: A kinetic model for distinguishing between direct and indirect interfacial hole transfer. I. Photoelectrochemical, experiments with polycrystalline anatase electrodes under current doubling and absence of recombination, J. Phys. Chem. B, 2004, 108, 15172–15181.

    Article  CAS  Google Scholar 

  47. P. Herrasti, and L. Peter, Photocurrent doubling during the oxidation of formic acid at n-CdS: an investigation by intensity modulated photocurrent spectroscopy, J. Electroanal. Chem., 1991, 305, 241–258.

    Article  CAS  Google Scholar 

  48. Y. Maeda, A. Fujishima, and K. Honda, The investigation of current doubling reactions on semiconductor photoelectrodes by temperature change measurements, J. Electrochem. Soc., 1981, 128, 1731–1734.

    Article  CAS  Google Scholar 

  49. K. Micka, and H. Gerischer, Anodic photooxidation of formic acid and methanol at a zinc oxide electrode and the influence of anions., J. Electroanal. Chem. Interfac. Eectrochem., 1972, 38, 397–402.

    Article  CAS  Google Scholar 

  50. T. Abe, E. Suzuki, K. Nagoshi, K. Miyashita, and M. Kaneko, Electron source in photoinduced hydrogen production on Pt-supported TiO2 particles, J. Phys. Chem. B, 1999, 103, 1119–1123.

    Article  CAS  Google Scholar 

  51. D. W. Bahnemann, M. R. Hoffmann, A. P. Hong, and C. Kormann, in The chemistry of acid rain sources and atmospheric processes, ACS Symp. Ser. 349, R. W. Johnson, and G. E. Gordon, eds., Washington, DC, 1987, Chapter 10, 120–132.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef W. Bahnemann.

Additional information

This paper was published as part of the themed issue of contributions from the 5th European Meeting on Solar Chemistry and Photocatalysis: Environmental Applications held in Palermo, Italy, October 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandiel, T.A., Dillert, R. & Bahnemann, D.W. Enhanced photocatalytic production of molecular hydrogen on TiO2 modified with Pt–polypyrrole nanocomposites. Photochem Photobiol Sci 8, 683–690 (2009). https://doi.org/10.1039/b817456c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b817456c

Navigation