Skip to main content
Log in

Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A new group of photoreceptors has been experimentally revealed in cyanobacteria. They are phototaxis regulator SyPixJ1, TePixJ and AnPixJ, chromatic acclimation regulator SyCcaS, circadian input kinasehomolog SyCikA and many other candidates, which have been found only in cyanobacteria to date. These new photoreceptors are now proposed to be “cyanobacteriochromes”. They are characterized by the presence of a chromophore-binding GAF domain that is homologous to the tetrapyrrole-binding GAF domain of the phytochrome. Here, we summarized unique features of those representatives: (1) only the GAF domain is sufficient for full photoconversion, (2) the GAF domain is homologous to but distinct from the phytochromeGAF, (3) the GAF domain binds a linear tetrapyrrole pigment such as phycoviolobilin or phycocyanobilin, (4) spectral properties are very diverse from near ultra-violet to red region. We also discussed the functionality of the other candidate GAFs, structure and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. C. Rockwell, Y. S. Su and J. C. Lagarias, Phytochrome structure and signaling mechanisms Annu. Rev. Plant Biol. 2006 57 837–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. T. Kaneko, A. Tanaka, S. Sato, H. Kotani, T. Sazuka, N. Miyajima, M. Sugiura and S. Tabata, Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome DNA Res. 1995 2 153–166 191-158

    Article  CAS  PubMed  Google Scholar 

  3. T. Kaneko, S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugiura, S. Sasamoto, T. Kimura, T. Hosouchi, A. Matsuno, A. Muraki, N. Nakazaki, K. Naruo, S. Okumura, S. Shimpo, C. Takeuchi, T. Wada, A. Watanabe, M. Yamada, M. Yasuda and S. Tabata, Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions DNA Res. 1996 3 109–136

    Article  CAS  PubMed  Google Scholar 

  4. J. Hughes, T. Lamparter, F. Mittmann, E. Hartmann, W. Gartner, A. Wilde and T. Borner, A prokaryotic phytochrome Nature 1997 386 663

    Article  CAS  PubMed  Google Scholar 

  5. K. C. Yeh, S. H. Wu, J. T. Murphy and J. C. Lagarias, A cyanobacterial phytochrome two-component light sensory system Science 1997 277 1505–1508

    Article  CAS  PubMed  Google Scholar 

  6. M. Herdman, T. Coursin, R. Rippka, J. Houmard, N. Tandeau de Marsac A new appraisal of the prokaryotic origin of eukaryotic phytochromes J. Mol. Evol. 2000 51 205–213

    Article  CAS  PubMed  Google Scholar 

  7. T. Lamparter, Evolution of cyanobacterial and plant phytochromes FEBS Lett. 2004 573 1–5

    Article  CAS  PubMed  Google Scholar 

  8. S. J. Davis, A. V. Vener and R. D. Vierstra, Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria Science 1999 286 2517–2520

    Article  CAS  PubMed  Google Scholar 

  9. A. Blumenstein, K. Vienken, R. Tasler, J. Purschwitz, D. Veith, N. Frankenberg-Dinkel and R. Fischer, The Aspergillus nidulans phytochrome FphA represses sexual development in red light Curr. Biol. 2005 15 1833–1838

    Article  CAS  PubMed  Google Scholar 

  10. L. M. Corrochano, Fungal photoreceptors: sensory molecules for fungal development and behaviour Photochem. Photobiol. Sci. 2007 6 725–736

    Article  CAS  PubMed  Google Scholar 

  11. D. M. Kehoe and A. R. Grossman, Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors Science 1996 273 1409–1412

    Article  CAS  PubMed  Google Scholar 

  12. L. Aravind and C. P. Ponting, The GAF domain: an evolutionary link between diverse phototransducing proteins Trends Biochem. Sci. 1997 22 458–459

    Article  CAS  PubMed  Google Scholar 

  13. M. Ohmori, M. Ikeuchi, N. Sato, P. Wolk, T. Kaneko, T. Ogawa, M. Kanehisa, S. Goto, S. Kawashima, S. Okamoto, H. Yoshimura, H. Katoh, T. Fujisawa, S. Ehira, A. Kamei, S. Yoshihara, R. Narikawa and S. Tabata, Characterization of genes encoding multi-domain proteins in the genome of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 DNA Res. 2001 8 271–284

    Article  CAS  PubMed  Google Scholar 

  14. B. L. Montgomery and J. C. Lagarias, Phytochrome ancestry: sensors of bilins and light Trends Plant Sci. 2002 7 357–366

    Article  CAS  PubMed  Google Scholar 

  15. A. Wilde, Y. Churin, H. Schubert and T. Borner, Disruption of a Synechocystis sp. PCC 6803 gene with partial similarity to phytochrome genes alters growth under changing light qualities FEBS Lett. 1997 406 89–92

    Article  CAS  PubMed  Google Scholar 

  16. S. Yoshihara, F. Suzuki, H. Fujita, X. X. Geng and M. Ikeuchi, Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803 Plant Cell Physiol. 2000 41 1299–1304

    Article  CAS  PubMed  Google Scholar 

  17. D. Bhaya, A. Takahashi and A. R. Grossman, Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803 Proc. Natl. Acad. Sci. USA 2001 98 7540–7545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O. Schmitz, M. Katayama, S. B. Williams, T. Kondo and S. S. Golden, CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock Science 2000 289 765–768

    Article  CAS  PubMed  Google Scholar 

  19. M. Mutsuda, K. P. Michel, X. Zhang, B. L. Montgomery and S. S. Golden, Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942 J. Biol. Chem. 2003 278 19102–19110

    Article  CAS  PubMed  Google Scholar 

  20. N. B. Ivleva, T. Gao, A. C. LiWang and S. S. Golden, Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock Proc. Natl. Acad. Sci. USA 2006 103 17468–17473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Katayama and M. Ikeuchi, in Frontiers in Life Sciences, ed. M. Fujiwara, N. Sato and S. Ishiura, Research Signpost, Kerala, 2006, pp. 65-90

  22. Y. Hirose, T. Shimada, R. Narikawa, M. Katayama and M. Ikeuchi, Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein Proc. Natl. Acad. Sci. USA 2008 105 9528–9533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. W. Mullineaux, How do cyanobacteria sense and respond to light? Mol. Microbiol. 2001 41 965–971

    Article  CAS  PubMed  Google Scholar 

  24. B. L. Montgomery, Sensing the light: photoreceptive systems and signal transduction in cyanobacteria Mol. Microbiol. 2007 64 16–27

    Article  CAS  PubMed  Google Scholar 

  25. S. Yoshihara, M. Katayama, X. Geng and M. Ikeuchi, Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms Plant Cell Physiol. 2004 45 1729–1737

    Article  CAS  PubMed  Google Scholar 

  26. S. Yoshihara, T. Shimada, D. Matsuoka, K. Zikihara, T. Kohchi and S. Tokutomi, Reconstitution of blue-green reversible photoconversion of a cyanobacterial photoreceptor, PixJ1, in phycocyanobilin-producing Escherichia coli Biochemistry 2006 45 3775–3784

    Article  CAS  PubMed  Google Scholar 

  27. T. Ishizuka, T. Shimada, K. Okajima, S. Yoshihara, Y. Ochiai, M. Katayama and M. Ikeuchi, Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1 Plant Cell Physiol. 2006 47 1251–1261

    Article  CAS  PubMed  Google Scholar 

  28. K. Terauchi, B. L. Montgomery, A. R. Grossman, J. C. Lagarias and D. M. Kehoe, RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness Mol. Microbiol. 2004 51 567–577

    Article  CAS  PubMed  Google Scholar 

  29. R. Narikawa, Y. Fukushima, T. Ishizuka, S. Itoh and M. Ikeuchi, A novel photoactive GAF domain of cyanobacteriochrome AnPixJ that shows reversible green/red photoconversion J. Mol. Biol. 2008 380 844–855

    Article  CAS  PubMed  Google Scholar 

  30. R. Narikawa, T. Kohchi and M. Ikeuchi, Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr1969) of the cyanobacterium Synechocystis sp. PCC 6803 Photochem. Photobiol. Sci. 2008 DOI:10.1039/b811214b

    Google Scholar 

  31. B. Karniol, J. R. Wagner, J. M. Walker and R. D. Vierstra, Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors Biochem. J. 2005 392 103–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. W. M. Schluchter and A. N. Glazer, Characterization of cyanobacterial biliverdin reductase. Conversion of biliverdin to bilirubin is important for normal phycobiliprotein biosynthesis J. Biol. Chem. 1997 272 13562–13569

    Article  CAS  PubMed  Google Scholar 

  33. T. Lamparter, B. Esteban and J. Hughes, Phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803. Purification, assembly, and quaternary structure Eur. J. Biochem. 2001 268 4720–4730

    Article  CAS  PubMed  Google Scholar 

  34. B. Quest, T. Hubschmann, S. Sharda, N. Tandeau de Marsac and W. Gartner, Homologous expression of a bacterial phytochrome. The cyanobacterium Fremyella diplosiphon incorporates biliverdin as a genuine, functional chromophore FEBS J. 2007 274 2088–2098

    Article  CAS  PubMed  Google Scholar 

  35. J. R. Wagner, J. S. Brunzelle, K. T. Forest and R. D. Vierstra, A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome Nature 2005 438 325–331

    Article  CAS  PubMed  Google Scholar 

  36. J. R. Wagner, J. Zhang, J. S. Brunzelle, R. D. Vierstra and K. T. Forest, High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution J. Biol. Chem. 2007 282 12298–12309

    Article  CAS  PubMed  Google Scholar 

  37. X. Yang, E. A. Stojkovic, J. Kuk and K. Moffat, Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion Proc. Natl. Acad. Sci. USA 2007 104 12571–12576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M. D. Baker, P. M. Wolanin and J. B. Stock, Signal transduction in bacterial chemotaxis Bioessays 2006 28 9–22

    Article  CAS  PubMed  Google Scholar 

  39. S. Yoshihara, X. Geng, S. Okamoto, K. Yura, T. Murata, M. Go, M. Ohmori and M. Ikeuchi, Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803 Plant Cell Physiol. 2001 42 63–73

    Article  CAS  PubMed  Google Scholar 

  40. D. Bhaya, N. R. Bianco, D. Bryant and A. Grossman, Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803 Mol. Microbiol. 2000 37 941–951

    Article  CAS  PubMed  Google Scholar 

  41. S. Yoshihara, X. Geng and M. Ikeuchi, pilG gene cluster and split pilL genes involved in pilus biogenesis, motility and genetic transformation in the cyanobacterium Synechocystis sp. PCC 6803 Plant Cell Physiol. 2002 43 513–521

    Article  CAS  PubMed  Google Scholar 

  42. K. Okajima, S. Yoshihara, Y. Fukushima, X. Geng, M. Katayama, S. Higashi, M. Watanabe, S. Sato, S. Tabata, Y. Shibata, S. Itoh and M. Ikeuchi, Biochemical and functional characterization of BLUF-type flavin-binding proteins of two species of cyanobacteria J. Biochem. (Tokyo) 2005 137 741–750

    Article  CAS  Google Scholar 

  43. S. Yoshihara and M. Ikeuchi, Phototactic motility in the unicellular cyanobacterium Synechocystis sp. PCC 6803 Photochem. Photobiol. Sci. 2004 3 512–518

    Article  CAS  PubMed  Google Scholar 

  44. D. Bhaya, Light matters: phototaxis and signal transduction in unicellular cyanobacteria Mol. Microbiol. 2004 53 745–754

    Article  CAS  PubMed  Google Scholar 

  45. K. Mukougawa, H. Kanamoto, T. Kobayashi, A. Yokota and T. Kohchi, Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli FEBS Lett. 2006 580 1333–1338

    Article  CAS  PubMed  Google Scholar 

  46. T. Ishizuka, R. Narikawa, T. Kohchi, M. Katayama and M. Ikeuchi, Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore Plant Cell Physiol. 2007 48 1385–1390

    Article  CAS  PubMed  Google Scholar 

  47. J. E. Bishop, H. Rapoport, A. V. Klotz, C. F. Chan, A. N. Glazer, P. Fuglistaller and H. Zuber, Chromopeptides from phycoerythrocyanin. Structure and linkage of the three groups. J. Am. Chem. Soc. 1987 109 875–881

    Article  CAS  Google Scholar 

  48. M. Storf, A. Parbel, M. Meyer, B. Strohmann, H. Scheer, M. G. Deng, M. Zheng, M. Zhou and K. H. Zhao, Chromophore attachment to biliproteins: specificity of PecE/PecF, a lyase-isomerase for the photoactive 3(1)-cys-alpha 84-phycoviolobilin chromophore of phycoerythrocyanin Biochemistry 2001 40 12444–12456

    Article  CAS  PubMed  Google Scholar 

  49. K. H. Zhao, D. Wu, M. Zhou, L. Zhang, S. Bohm, C. Bubenzer and H. Scheer, Amino acid residues associated with enzymatic activities of the isomerizing phycoviolobilin-lyase PecE/F Biochemistry 2005 44 8126–8137

    Article  CAS  PubMed  Google Scholar 

  50. S. Bohm, S. Endres, H. Scheer and K. H. Zhao, Biliprotein chromophore attachment: chaperone-like function of the PecE subunit of alpha-phycoerythrocyanin lyase J. Biol. Chem. 2007 282 25357–25366

    Article  PubMed  CAS  Google Scholar 

  51. N. C. Rockwell, S. L. Njuguna, L. Roberts, E. Castillo, V. L. Parson, S. Dwojak, J. C. Lagarias and S. C. Spiller, A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Biochemistry 2008 47 7304–7316

    Article  CAS  PubMed  Google Scholar 

  52. W. Nultsch, H. Schuchart and M. Hohl, Investigations on the phototactic orientation of Anabaena variabilis. Arch. Microbiol. 1979 122 85–91

    Article  CAS  Google Scholar 

  53. W. Nultsch, H. Schuchart and F. Koenig, Effects of sodium azide on phototaxis of the blue-green alga Anabaena variabilis and consequences to the two-photoreceptor systems-hypothesis Arch. Microbiol. 1983 134 33–37

    Article  CAS  PubMed  Google Scholar 

  54. Y. Hihara, T. Hiyama, M. Kanehisa and M. Ikeuchi,in PS2001 Proceedings: 12th International Congress on Photosynthesis S41-015, CSIRO Publishing, Melbourne, 2001

  55. L. O. Seib and D. M. Kehoe, A turquoise mutant genetically separates expression of genes encoding phycoerythrin and its associated linker peptides J. Bacteriol. 2002 184 962–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. L. Li and D. M. Kehoe, In vivo analysis of the roles of conserved aspartate and histidine residues within a complex response regulator Mol. Microbiol. 2005 55 1538–1552

    Article  CAS  PubMed  Google Scholar 

  57. L. Li, R. M. Alvey, R. P. Bezy and D. M. Kehoe, Inverse transcriptional activities during complementary chromatic adaptation are controlled by the response regulator RcaC binding to red and green light-responsive promoters Mol. Microbiol. 2008 68 286–297

    Article  CAS  PubMed  Google Scholar 

  58. C. M. Park, J. I. Kim, S. S. Yang, J. G. Kang, J. H. Kang, J. Y. Shim, Y. H. Chung, Y. M. Park and P. S. Song, A second photochromic bacteriophytochrome from Synechocystis sp. PCC 6803: spectral analysis and down-regulation by light Biochemistry 2000 39 10840–10847

    Article  CAS  PubMed  Google Scholar 

  59. S. H. Wu and J. C. Lagarias, Defining the bilin lyase domain: lessons from the extended phytochrome superfamily Biochemistry 2000 39 13487–13495

    Article  CAS  PubMed  Google Scholar 

  60. A. Wilde, B. Fiedler and T. Borner, The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light Mol. Microbiol. 2002 44 981–988

    Article  CAS  PubMed  Google Scholar 

  61. B. Fiedler, T. Borner and A. Wilde, Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: role of different photoreceptors Photochem. Photobiol. 2005 81 1481–1488

    Article  CAS  PubMed  Google Scholar 

  62. S. Okamoto, M. Kasahara, A. Kamiya, Y. Nakahira and M. Ohmori, A phytochrome-like protein AphC triggers the cAMP signaling induced by far-red light in the cyanobacterium Anabaena sp. strain PCC7120 Photochem. Photobiol. 2004 80 429–433

    Article  CAS  PubMed  Google Scholar 

  63. A. Losi and W. Gartner, Bacterial bilin- and flavin-binding photoreceptors, Photochem. Photobiol. Sci., 2008DOI:10.1389/b802472c

    Google Scholar 

  64. Y. S. Ho, L. M. Burden and J. H. Hurley, Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor EMBO J. 2000 19 5288–5299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. V. Anantharaman and L. Aravind, MEDS and PocR are novel domains with a predicted role in sensing simple hydrocarbon derivatives in prokaryotic signal transduction systems Bioinformatics 2005 21 2805–2811

    Article  CAS  PubMed  Google Scholar 

  66. I. Letunic, R. R. Copley, B. Pils, S. Pinkert, J. Schultz and P. Bork, SMART 5: domains in the context of genomes and networks Nucleic Acids Res. 2006 34 D257–260

    Article  CAS  PubMed  Google Scholar 

  67. J. D. Thompson, D. G. Higgins and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res. 1994 22 4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Ikeuchi.

Additional information

This paper was published as part of the themed issue of contributions from the 7th International Conference on Tetrapyrrole Photoreceptors in Photosynthetic Organisms held in Kyoto, December 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeuchi, M., Ishizuka, T. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem Photobiol Sci 7, 1159–1167 (2008). https://doi.org/10.1039/b802660m

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b802660m

Navigation