Skip to main content
Log in

Rapid determination of spore chemistry using thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Spore chemistry is at the centre of investigations aimed at producing a proxy record of harmful ultraviolet radiation (UV-B) through time. A biochemical proxy is essential owing to an absence of long-term (century or more) instrumental records. Spore cell material contains UV-B absorbing compounds that appear to be synthesised in variable amounts dependent on the ambient UV-B flux. To facilitate these investigations we have developed a rapid method for detecting variations in spore chemistry using combined thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy. Our method was tested using spores obtained from five populations of the tropical lycopsid Lycopodium cernuum growing across an altitudinal gradient (650-1981 m a.s.l.) in S.E. Asia with the assumption that they experienced a range of UV-B radiation doses. Thermochemolysis and subsequent pyrolysis liberated UV-B pigments (ferulic and para-coumaric acid) from the spores. All of the aromatic compounds liberated from spores by thermochemolysis and pyrolysis were active in UV-B protection. The various functional groups associated with UV-B protecting pigments were rapidly detected by micro-FTIR and included the aromatic C?C absorption band which was exclusive to the pigments. We show increases in micro-FTIR aromatic absorption (1510 cm−1) with altitude that may reflect a chemical response to higher UV-B flux. Our results indicate that rapid chemical analyses of historical spore samples could provide a record ideally suited to investigations of a proxy for stratospheric O3 layer variability and UV-B flux over historical (century to millennia) timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rozema, A. J. Noordijk, R. A. Broekman, B. M. van Beem, (Poly)phenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B Plant Ecol. 2001 154 11.

    Google Scholar 

  2. J. Rozema, R. A. Broekman, P. Blokker, B. B. Meijkamp, N. de Bakker, N. J. van de Staaij, A. van Beem, F. Ariese and S. M. Kars, UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levels J. Photochem. Photobiol., B 2001 62 108–117.

    Article  CAS  Google Scholar 

  3. P. Boelen, M. K. de Boer, N. V. J. de Bakker and J. Rozema, Outdoor studies on the effects of solar UV-B on bryophytes: overview and methodology Plant Ecol. 2006 182 137–152.

    Article  Google Scholar 

  4. J. Rozema, P. Boelen, B. Solheim, M. Zielke, A. Buskens, M. Doorenbosch, R. Fijn, J. Herder, T. Callaghan, L. O. Bjorn, D. G. Jones, R. Broekman, P. Blokker, W. van de Poll, Plant Ecol. 2006 182 121–135.

    Article  Google Scholar 

  5. J. C. Farman, B. G. Gardiner and J. D. Shanklin, Large losses of total ozone in Antarctica reveal seasonal interaction Nature 1985 315 207–210.

    Article  CAS  Google Scholar 

  6. J. Rozema, B. van Geel, L. O. Björn, J. Lean and S. Madronich, Towards solving the UV puzzle Science 2002 296 1621–1622.

    Article  CAS  PubMed  Google Scholar 

  7. T. A. Day and P. J. Neale, Effects of UV-B radiation on terrestrial and aquatic primary producers Annu. Rev. Ecol. Syst. 2002 33 371–396.

    Article  Google Scholar 

  8. P. S. Searles, S. D. Flint and M. M. Caldwell, A meta-analysis of plant field studies simulating stratospheric ozone depletion Oecologia 2001 127 1–10.

    PubMed  Google Scholar 

  9. C. S. Cockell and J. Knowland, Ultraviolet radiation screening compounds Biol. Rev. 1999 74 311–345.

    Article  CAS  PubMed  Google Scholar 

  10. K. K. Newsham, A. Hodgson, A. W. A. Murray, H. J. Peat, R. I. Lewis Smith, Response of two Antarctic bryophytes to stratospheric ozone depletion Glob. Change Biol. 2002 8 972–983.

    Article  Google Scholar 

  11. C. V. Giordano, T. Mori, O. E. Sala, A. L. Scopel, K. K. Caldwell and C. L. Ballare, Functional acclimation of solar UV-B radiation in Gunnera magellanica, a native plant species of southernmost Patagonia Plant, Cell Environ. 2003 26 2027–2036.

    Article  Google Scholar 

  12. J. M. Challinor, Review: the development and applications of thermally assisted hydrolysis and methylation reactions J. Anal. Appl. Pyrolysis 2001 61 3–34.

    Article  CAS  Google Scholar 

  13. P. Blokker, D. Yeloff, P. Boelen, R. A. Broekman and J. Rozema, Development of a proxy for past surface UV-B irradiation: a thermally assisted hydrolysis and methylation py-GC/MS method for the analysis of pollen and spores Anal. Chem. 2005 77 6026–6031.

    Article  CAS  PubMed  Google Scholar 

  14. R. McKenzie, G. Bodeker, G. Scott, J. Slusser and K. Lantz, Geographical differences in erythemally-weighted UV measured at mid-latitude USDA sites Photochem. Photobiol. Sci. 2006 5 343–352.

    Article  CAS  PubMed  Google Scholar 

  15. D. J. Beerling, Low atmospheric CO2 levels during the Permo-Carboniferous glaciation inferred from fossil lycopsids Proc. Natl. Acad. Sci. USA 2002 99 12567–12571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D. H. Williams and I. Fleming, Spectroscopic methods in organic chemistry, 1980, McGraw-Hill, London.

    Google Scholar 

  17. P. G. Rouxhet, P. L. Robin and G. B. Nicaise, Characterisation of kerogens and their evolution by infrared spectroscopy, in Kerogen, ed. B. Durand, Editions Technip, Paris, 1980, pp. 163–190.

    Google Scholar 

  18. J. W. de Leeuw and C. Largeau, A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation, in Organic Geochemistry: Principles and Applications, eds M. H. Engel, and S. A. Macko, Plenum Press, New York, 1993, pp. 23–72.

    Chapter  Google Scholar 

  19. B. L. Yule, S. Roberts and J. E. A. Marshall, The thermal evolution of sporopollenin Org. Geochem. 2000 31 859–870.

    Article  CAS  Google Scholar 

  20. P. Blokker, P. Boelen, R. Broekman and J. Rozema, The occurrence of p-coumaric acid and ferulic acid in fossil plant materials and their use as UV-proxy Plant Ecol. 2006 182 197–207.

    Google Scholar 

  21. N. D. Paul, D. Gwynn-Jones, Ecological roles of solar UV radiation: towards an integrated approach Trends Ecol. Evol. 2003 18 48–65.

    Article  Google Scholar 

  22. E. W. Tegelaar, J. W. de Leeuw, S. Derenne and C. Largeau, A reappraisal of kerogen formation Geochim. Cosmochim. Acta 1989 53 3103–3106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Sephton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, J.S., Sephton, M.A., Sephton, S.V. et al. Rapid determination of spore chemistry using thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy. Photochem Photobiol Sci 6, 689–694 (2007). https://doi.org/10.1039/b617794h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b617794h

Navigation