Issue 2, 2007

The use of fullerene substituted phenylalanine amino acid as a passport for peptides through cell membranes

Abstract

We report the formation of a fullerene-peptide conjugate via the incorporation of a fullerene substituted phenylalanine derivative, “Bucky amino acid” (Baa), to a cationic peptide, which acts as a passport for intracellular delivery, enabling transport of a range of sequences into HEK-293, HepG2, and neuroblastoma cells where the peptides in the absence of the fullerene amino acid cannot enter the cell. Delivery of the fullerene species to either the cytoplasm or nucleus of the cell is demonstrated. Fullerene peptides based on the nuclear localization sequence (NLS), H-Baa-Lys(FITC)-Lys-Lys-Arg-Lys-Val-OH, can actively cross over the cell membrane and accumulate significantly around the nucleus of HEK-293 and neuroblastoma cells, while H-Baa-Lys(FITC)-Lys8-OH accumulates in the cytoplasm. Cellular studies show that the uptake for the anionic peptide Baa-Lys(FITC)Glu4Gly3Ser-OH is greatly reduced in comparison with the cationic fullerene peptides of the same concentration. The hydrophobic nature of the fullerene assisting peptide transport is suggested by the effect of γ-cyclodextrin (CD) in lowering the efficacy of transport. These data suggest that the incorporation of a fullerene-based amino acid provides a route for the intracellular delivery of peptides and as a consequence the creation of a new class of cell penetrating peptides.

Graphical abstract: The use of fullerene substituted phenylalanine amino acid as a passport for peptides through cell membranes

Article information

Article type
Paper
Submitted
02 Oct 2006
Accepted
08 Nov 2006
First published
17 Nov 2006

Org. Biomol. Chem., 2007,5, 260-266

The use of fullerene substituted phenylalanine amino acid as a passport for peptides through cell membranes

J. Yang, K. Wang, J. Driver, J. Yang and A. R. Barron, Org. Biomol. Chem., 2007, 5, 260 DOI: 10.1039/B614298B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements