Skip to main content
Log in

Effect of electron-acceptor strength of zeolite on the luminescence decay rate of Ru(bpy)32+ incorporated within zeolites

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We carried out time-resolved luminescence and transient absorption studies of tris(2,2′-bipyridine)ruthenium(II) complex, Ru(bpy)32+ assembled in the supercages of zeolites X and Y exchanged with various alkali metal cations. The average lifetime of the luminescence decay, a measure of the photoinduced electron transfer (PET) rate, of Ru(bpy)32+* was found to decrease with increasing the electron-acceptor strength of the host which is represented by the Sanderson’s electronegativity scale. This result strongly suggests that the zeolite host plays the role of electron acceptor for Ru(bpy)32+*. However, we could not detect Ru(bpy)33+ in the transient absorption spectra, most likely due to very low absorption coefficient of Ru(bpy)33+ and to the low efficiency of net PET. For the above observation to be made, it is essential to employ the dehydrated zeolite hosts to allow direct interaction between the guest Ru(II) complex and the host framework. The present study demonstrates the active role of the zeolite hosts during the PET of incorporated Ru(bpy)32+ under the carefully controlled experimental conditions. This report demonstrates the fact that the zeolite hosts can serve as electron acceptors although in the past zeolites were shown to play the role of electron donors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1974.

    Google Scholar 

  2. A. Dyer, An Introduction to Zeolite Molecular Sieves, Wiley, New York, 1988.

    Google Scholar 

  3. K. B. Yoon, Electron- and charge-transfer reactions within zeolites, Chem. Rev., 1993, 93, 321–339.

    Article  CAS  Google Scholar 

  4. W. De Wilde, G. Peeters, J. H. Lunsford, Synthesis and spectroscopic properties of tris(2,2’-bipyridine)ruthenium(ii) in zeolite Y, J. Phys. Chem., 1980, 84, 2306–2310.

    Article  Google Scholar 

  5. W. H. Quayle, J. H. Lunsford, Tris(2,2’-bipyridine)ruthenium(iii) in zeolite Y: characterization and reduction on exposure to water, Inorg. Chem., 1982, 21, 97–103.

    Article  CAS  Google Scholar 

  6. P. K. Dutta, W. Turbeville, Intrazeolitic photoinduced redox reactions between Ru(bpy)32+ and methylviologen, J. Phys. Chem., 1992, 96, 9410–9416.

    Article  CAS  Google Scholar 

  7. P. Laine, M. Lanz, G. Calzaferri, Limits of the in situ synthesis of tris(2,2’-bipyridine)ruthenium(ii) in the supercages of zeolite Y, Inorg. Chem., 1996, 35, 3514–3518.

    Article  CAS  Google Scholar 

  8. P. K. Dutta, J. A. Incavo, Photoelectron transfer from tris(2,2’-bipyridine)ruthenium(ii) to methylviologen in zeolite cages: a resonance raman spectroscopic study, J. Phys. Chem., 1987, 91, 4443–4446.

    Article  CAS  Google Scholar 

  9. Y. I. Kim, T. E. Mallouk, Dynamic electron-transfer quenching of the tris(2,2’-bipyridyl)ruthenium(ii) MLCT excited state by intrazeolitic methylviologen ions, J. Phys. Chem., 1992, 96, 2879–2885.

    Article  CAS  Google Scholar 

  10. P. K. Dutta, W. Turbeville, Intrazeolitic photoinduced redox reactions between Ru(bpy)32+ and methylviologen, J. Phys. Chem., 1992, 96, 9410–9416.

    Article  CAS  Google Scholar 

  11. M. Borja, P. K. Dutta, Storage of light energy by photoelectron transfer across a sensitized zeolite-solution interface, Nature, 1993, 362, 43–45.

    Article  CAS  Google Scholar 

  12. M. Sykora, J. R. Kincaid, Photochemical energy storage in a spatially organized zeolite-based photoredox system, Nature, 1997, 387, 162–164.

    Article  CAS  Google Scholar 

  13. M. Vitale, N. B. Castagnola, N. J. Ortins, J. A. Brooke, A. Vaidyalingam, P. K. Dutta, Intrazeolitic photochemical charge separation for Ru(bpy)32+-bipyridinium system: role of the zeolite structure, J. Phys. Chem. B, 1999, 103, 2408–2416.

    Article  CAS  Google Scholar 

  14. A. A. Bhuiyan, J. R. Kincaid, Zeolite-based organized molecular assemblies. photophysical characterization and documentation of donor oxidation upon photosensitized charge separation, Inorg. Chem., 2001, 40, 4464–4471.

    Article  CAS  Google Scholar 

  15. Y. S. Park, E. J. Lee, Y. S. Chun, Y. D. Yoon, K. B. Yoon, Long-lived charge-separation by retarding reverse flow of charge-balancing cation and zeolite-encapsulated Ru(bpy)32+ as photosensitized electron pump from zeolite framework to externally placed viologen, J. Am. Chem. Soc., 2002, 124, 7123–7135.

    Article  CAS  Google Scholar 

  16. J. A. Incavo, P. K. Dutta, Zeolite host–guest interactions: optical spectroscopic properties of tris(bipyridine)ruthenium(ii) in zeolite Y cages, J. Phys. Chem., 1990, 94, 3075–3081.

    Article  CAS  Google Scholar 

  17. W. Turbeville, D. S. Robins, P. K. Dutta, Zeolite-entrapped Ru(bpy)32+: intermolecular structural and dynamic effects, J. Phys. Chem., 1992, 96, 5024–5029.

    Article  CAS  Google Scholar 

  18. M. Sykora, J. R. Kincaid, P. K. Dutta, N. B. Castagnola, On the nature and extent of intermolecular interactions between entrapped complexes of Ru(bpy)32+ in zeolite Y, J. Phys. Chem. B, 1999, 103, 309–320.

    Article  CAS  Google Scholar 

  19. M. A. Coutant, T. Le, N. Castagnola, P. K. Dutta, Zeolite-induced solvation effects on excited-state properties of Ru(bpy)32+: implications for intrazeolitic photochemical quenching reactions, J. Phys. Chem. B, 2000, 104, 10783–10788.

    Article  CAS  Google Scholar 

  20. G. J. Kavarnos, N. J. Turro, Photosensitization by reversible electron transfer: theories, experimental evidence, and examples, Chem. Rev., 1986, 86, 401–449.

    Article  CAS  Google Scholar 

  21. M. Alvaro, H. García, S. García, F. Marquez, J. C. Scaiano, Intrazeolite photochemistry. 17. Zeolites as electron donors: photolysis of methylviologen incorporated within zeolites, J. Phys. Chem. B, 1997, 101, 3043–3051.

    Article  CAS  Google Scholar 

  22. S. Hashimoto, Zeolites as single electron donors for photoinduced electron transfer reactions of guest aromatic species, J. Chem. Soc., Faraday Trans., 1997, 93, 4401–4408.

    Article  CAS  Google Scholar 

  23. S. Hashimoto, Zeolite photochemistry: impact of zeolites on photochemistry and feedback from photochemistry to zeolite science, J. Photochem. Photobiol. C: Rev., 2003, 4, 19–49.

    Article  CAS  Google Scholar 

  24. W. J. Mortier, Zeolite electronegativity related to physicochemical properties, J. Catal., 1978, 55, 138–145.

    Article  CAS  Google Scholar 

  25. K. B. Yoon, Handbook of Zeolite Science and Technology, ed. M. Auerbach, K. A. Carrado and P. K. Dutta, Marcel Dekker, New York, 2003, pp. 591–720.

  26. J. K. Thomas, Physical aspect of photochemistry and radiation chemistry of molecules adsorbed on SiO2, γ-Al2O3, zeolites, and clays, Chem. Rev., 1993, 93, 301–320.

    Article  CAS  Google Scholar 

  27. L. Brancaleon, D. Brousmiche, V. J. Rao, L. J. Johnston, V. Ramamurthy, Photoinduced electron transfer reactions within zeolites: Detection of radical cations and dimerization of arylalkenes, J. Am. Chem. Soc., 1998, 120, 4926–4933.

    Article  CAS  Google Scholar 

  28. S. Hashimoto, T. Mutoh, S. Fukurura, H. Masuhara, J. Chem. Soc., Faraday Trans., 1996, 92, 3653–3660.

    Article  CAS  Google Scholar 

  29. Y. S. Park, Y. S. Lee, K. B. Yoon, J. Am. Chem. Soc., 1993, 115, 12220–12221.

    Article  CAS  Google Scholar 

  30. J. V. Houten, R. J. Watts, Temperature dependence of the photophysical and photochemical properties of the tris(2,2’-bipyridyl)ruthenium(ii) ion in aqueous solution, J. Am. Chem. Soc., 1976, 98, 4853–4858.

    Article  Google Scholar 

  31. S. Hashimoto, K. Uehara, K. Sogawa, M. Takada, H. Fukumura, Application of time- and space-resolved fluorescence spectroscopy to the distribution of guest species into micrometer-sized zeolite crystals, Phys. Chem. Chem. Phys., 2006, 8, 1451–1458.

    Article  CAS  Google Scholar 

  32. C. V. Kumar, Z. J. Williams, Supramolecular assemblies of tris(2,2’-bipyridine)ruthenium(ii) bound to hydrophobically modified a-zirconium phosphate: photophysical studies, J. Phys. Chem., 1995, 99, 17632–17639.

    Article  CAS  Google Scholar 

  33. N. Ikeda, A. Yoshimura, M. Tsushima, T. Ohno, Hopping and annihilation of 3MLCT in the crystalline solid of [Ru(bpy)3]X2 (X = Cl, ClO4 and PF6, J. Phys. Chem. A, 2000, 104, 6158–6164.

    Article  CAS  Google Scholar 

  34. P. K. Ghosh, B. S. Brunschwig, M. Chou, C. Creutz, N. Sutin, Thermal and light-induced reduction of Ru(bpy)33+ in aqueous solution, J. Am. Chem. Soc., 1984, 106, 4772–4783.

    Article  CAS  Google Scholar 

  35. A. Furube, T. Shiozawa, A. Ishikawa, A. Wada, K. Domen, C. Hirose, Femtosecond transient absorption spectroscopy on photocatalysts: K4Nb6O17 and Ru(bpy)32+-intercalated K4Nb6O17 thin films, J. Phys. Chem. B, 2002, 106, 3065–3072.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

† The HTML version of this article has been enhanced with colour images.

‡ Electronic supplementary information (ESI) available: Fig. S1–S3. See DOI: 10.1039/b605469b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taira, N., Saitoh, M., Hashimoto, S. et al. Effect of electron-acceptor strength of zeolite on the luminescence decay rate of Ru(bpy)32+ incorporated within zeolites. Photochem Photobiol Sci 5, 822–827 (2006). https://doi.org/10.1039/b605469b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b605469b

Navigation