Skip to main content

Advertisement

Log in

A novel 10B-enriched carboranyl-containing phthalocyanine as a radio- and photo-sensitising agent for boron neutron capture therapy and photodynamic therapy of tumours: in vitro and in vivo studies

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The synthesis of a Zn(ii)-phthalocyanine derivative bearing four 10B-enriched o-carboranyl units (10B-ZnB4Pc) and its natural isotopic abundance analogue (ZnB4Pc) in the peripheral positions of the tetraazaisoindole macrocycle is presented. The photophysical properties of ZnB4Pc, as tested against model biological systems, were found to be similar with those typical of other photodynamically active porphyrin-type photosensitisers, including a singlet oxygen quantum yield of 0.67. The carboranyl-carrying phthalocyanine was efficiently accumulated by B16F1 melanotic melanoma cells in vitro, appeared to be partitioned in at least some subcellular organelles and, upon red light irradiation, induced extensive cell mortality. Moreover, ZnB4Pc, once i.v.-injected to C57BL/6 mice bearing a subcutaneously transplanted pigmented melanoma, photosensitised an important tumour response, provided that the irradiation at 600–700 nm was performed 3 h after the phthalocyanine administration, when appreciable concentrations of ZnB4Pc were still present in the serum. Analogously, irradiation of the 10B-ZnB4Pc-loaded pigmented melanoma with thermal neutrons 24 h after injection led to a 4 day delay in tumour growth as compared with control untreated mice. These results open the possibility to use one chemical compound as both a photosensitising and a radiosensitising agent for the treatment of tumours by the combined application of photodynamic therapy and boron neutron capture therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Z. Diaz, J. A. Coderre, A. D. Chanana and R. Ma, Boron neutron capture therapy for malignant gliomas, Ann. Med., 2000, 32, 81–85.

    Article  CAS  PubMed  Google Scholar 

  2. R. Ackroyd, C. Kelty, N. Brown and M. Reed, The history of photodetection and photodynamic therapy, Photochem. Photobiol., 2001, 74, 656–659.

    Article  CAS  PubMed  Google Scholar 

  3. R. F. Barth, A. H. Soloway, J. H. Goldman, R. A. Gadbauer, N. Gupta, T. E. Blue, W. Yang and W. Tjarks, Boron neutron capture therapy of brain tumours: an emerging therapeutic modality, Neurosurgery, 1999, 44, 433–451.

    Article  CAS  PubMed  Google Scholar 

  4. B. W. Henderson and T. J. Dougherty, How does photodynamic therapy work?, Photochem. Photobiol., 1999, 55, 145–147.

    Article  Google Scholar 

  5. M. Ochsner, Photophysical and photobiological processes in photodynamic therapy of tumours, J. Photochem. Photobiol., B, 1997, 39, 1–18.

    Article  CAS  Google Scholar 

  6. R. F. Barth, W. Yang, J. D. Rotaru, M. L. Moeschberger, C. P. Boesel, A. H. Soloway, D. D. Joel, M. M. Nawrocky, K. Ono and J. H. Goodman, Boron neutron capture therapy of brain tumours: enhanced survival and cure following blood-brain barrier disruption and intracarotid injection of sodium borocaptate and boronphenylalanine, Int. J. Radiat. Oncol. Biol., Phys., 2000, 47, 209–218.

    Article  CAS  Google Scholar 

  7. R. Bonnett, Chemical Aspects of Photodynamic Therapy, Gordon and Breach Science Publishers, Amsterdam, 2000.

    Google Scholar 

  8. M. Miura, P. L. Micca, C. D. Fisher, C. R. Gordon, J. C. Heinrichs and D. N. Slatkin, Evaluation of carborane-containing porphyrins as tumour targeting agents for boron neutron capture therapy, Br. J. Radiol., 1998, 71, 773–781.

    Article  CAS  PubMed  Google Scholar 

  9. S. B. Kahl and J. Li, Synthesis and characterization of a boronated metallo-phthalocyanine for boron neutron capture therapy, Inorg. Chem., 1996, 35, 3878–3880.

    Article  CAS  PubMed  Google Scholar 

  10. G. Jori, Photodynamic therapy: basic and preclinical aspects, in CRC Handbook of Organic Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press, Baton Rouge, 2nd edn, 2004, pp. 146–1–146–10.

    Google Scholar 

  11. C. Fabris, G. Jori, F. Giuntini and G. Roncucci, Photosensitising properties of a boronated phthalocyanine: studies at the molecular and cellular level, J. Photochem. Photobiol., B, 2001, 64, 1–7.

    Article  CAS  Google Scholar 

  12. W. L. F. Armarego and D. D. Perrin, Purification of Laboratory Chemicals, Butterworth-Heinemann, Oxford, 4th edn, 1996.

    Google Scholar 

  13. F. Giuntini, Y. Raoul, D. Dei, M. Municchi, G. Chiti, C. Fabris, P. Colautti, G. Jori and G. Roncucci, Synthesis of tetrasubstituted Zn(ii)-phthalocyanines carrying four carboranyl-units as potential BNCT and PDT agents, Tetrahedron Lett., 2005, 46, 2979–2982.

    Article  CAS  Google Scholar 

  14. G. Valduga, S. Nonell, E. Reddi, G. Jori and S. Braslavsky, The production of singlet molecular oxygen by Zinc(ii)-phthalocyanine in ethanol and in unilamellar vesicles. Chemical quenching and phosphorescence studies, Photochem. Photobiol., 1988, 48, 1–5.

    Article  CAS  PubMed  Google Scholar 

  15. E. Gross, B. Ehrenberg and F. Johnson, Singlet oxygen generation by porphyrins and the kinetics of 9,10-dimethyl-anthracene photosensitisation in liposomes, Photochem. Photobiol., 1993, 57, 808–813.

    Article  CAS  PubMed  Google Scholar 

  16. J. E. van Lier and J. D. Spikes, The chemistry, photophysics and photosensitising properties of phthalocyanines, in Photosensitising Compounds: their Chemistry, Biology and Clinical Use, ed. G. Bock and S. Harnett, Ciba Foundation Symposium 146, London, 1989, pp. 17–26.

    Google Scholar 

  17. G. Valduga, E. Reddi and G. Jori, Spectroscopic studies on Zn(ii)-phthalocyanine in homogeneous and microheterogeneous systems, J. Inorg. Chem., 1987, 29, 59–65.

    CAS  Google Scholar 

  18. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner and M. D. Provenzano, Measurement of protein using bicinchoninic acid, Anal. Biochem., 1985, 150, 76–85.

    Article  CAS  PubMed  Google Scholar 

  19. S. Rockwell, In vivo-in vitro tumour cell lines: characteristics and model for human cancer, Br. J. Cancer, 1980, 41, 118–126.

    Google Scholar 

  20. C. Fabris, G. Valduga, G. Miotto, G. Jori, S. Garbisa and E. Reddi, Photosensitisation with Zn(ii)-phthalocyanine as a switch in the decision between apoptosis and necrosis, Cancer Res., 2001, 61, 7495–7500.

    CAS  PubMed  Google Scholar 

  21. K. W. Burn, L. Casalini, S. Martini, M. Mazzini, E. Nava, C. Petrovich, G. Rosi, M. Sarotto and R. Tinti, An epithermal facility for treating brain gliomas at the TAPIRO reactor, Appl. Radiat. Isot., 2004, 61, 987–991.

    Article  CAS  PubMed  Google Scholar 

  22. G. Rosi, G. Gambarini, V. Colli, S. Gay, L. Scolari, O. Fiorani, A. Perrone, E. Nava, E. Fasola, L. Visca and A. Zanini, Characterisation of TAPIRO BNCT thermal facility, Radiat. Prot. Dosim., 2004, 110, 651–654.

    Article  CAS  Google Scholar 

  23. J. A. Coderre, D. N. Slatkin, P. L. Micca and J. R. Cialella, Boron Neutron Capture therapy of a Murine Melanoma with p-Boronophenylanine: Dose-Response Analysis using a Morbidity Index, Radiat. Res., 1991, 128, 177–185.

    Article  CAS  PubMed  Google Scholar 

  24. ICRU Report 46: Photon, Proton, Electron and Neutron Interaction data for body tissues, International Commission on Radiation Units and Measurements, 1992.

  25. J. S. Hendricks, MCNPX (Version 2.5e), Los Alamos National Laboratory Report, LA-UR-04-0569, February 2004.

    Google Scholar 

  26. ICRU 63 Report: Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection, International Commission on Radiation Units and Measurements, 2000.

  27. L. De Nardo, E. Seravalli, G. Rosi, J. Esposito, P. Colautti, V. Conte and G. Tornielli, BNCT microdosimetry at the Tapiro reactor thermal column, Radiat. Prot. Dosim., 2004, 110, 579–586.

    Article  Google Scholar 

  28. J. L. Maurer, F. Berchier, A. J. Serino, C. B. Knobler and M. F. Hawthorne, Preparation and properties of metallo-phthalocyanines, J. Org. Chem., 1990, 55, 838–843.

    Article  CAS  Google Scholar 

  29. C. C. Leznoff, Synthetic strategies for peripherally substituted phthalocyanines, in Phthalocyanines, Properties and Applications, ed. C. C. Leznoff and A. B. P. Lever, VCH Publishers Inc., New York, 1989, vol. 1, pp. 159–169.

    Google Scholar 

  30. N. Oleinick, R. L. Morris and I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why and how, Photochem. Photobiol. Sci., 2002, 1, 1–21.

    Article  CAS  PubMed  Google Scholar 

  31. G. Jori, Low-density lipoproteins-liposome delivery systems for tumour photosensitisers in vivo, in Photodynamic Therapy, ed. B. W. Henderson and T. J. Dougherty, Marcel Dekker Inc., New York, 1992, pp. 173–176.

    Google Scholar 

  32. G. Jori, In vivo transport and pharmacokinetic behaviour of tumour photosensitisers, in Photosensitising Compounds: their Chemistry, Biology and Clinical Use, ed. G. Bock and S. Harnett, Ciba Foundation Symposium 146, London, 1989, pp. 173–186.

    Google Scholar 

  33. V. Gottumukkala, R. Luguya, F. R. Fronczek and M. G. H. Vicente, Synthesis and cellular studies of an octa-anionic 5,10,15,20-tetra[3,5-(nido-carboranylmethyl)phenyl]porphyrin (H2OCP) for application in BNCT, Biorg. Med. Chem., 2005, 13, 1633–1640.

    Article  CAS  Google Scholar 

  34. R. Luguya, F. R. Fronczek, K. M. Smith and M. G. H. Vicente, Synthesis of novel carboranylchlorins with dual application in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT), Appl. Radiat. Isot., 2004, 61, 1117–1123.

    Article  CAS  PubMed  Google Scholar 

  35. M. G. H. Vicente, Porphyrin-based sensitisers in the detection and treatment of cancer: recent progress, Curr. Med. Chem.:Anti-Cancer Agents, 2001, 1, 175–194.

    Article  CAS  PubMed  Google Scholar 

  36. K. Berg, Mechanisms of cell damage in photodynamic therapy, in The Fundamental Basis of Phototherapy, ed. H. Hönigsmann, G. Jori and A. R. Young, OEMF, Milano, 1996, pp. 181–207.

    Google Scholar 

  37. A. C. E. Moor, B. Ortel and T. Hasan, Mechanisms of photodynamic therapy, in Photodynamic Therapy, ed. T. Patrice, Royal Society of Chemistry, Cambridge, 2003, pp. 19–57.

    Chapter  Google Scholar 

  38. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  39. G. Jori and E. Reddi, The role of lipoproteins in the delivery of tumour-targeting photosensitisers, Int. J. Biochem., 1993, 25, 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  40. C. Fitsch, G. Goerz and T. Ruzicka, Photodynamic therapy in dermatology: a review, Arch. Dermatol., 1998, 134, 207–214.

    Article  Google Scholar 

  41. P. G. Calzavara-Pinton, R. M. Szeimies and B. Ortel, Photodynamic Therapy and Fluorescence Diagnosis in Dermatology, ed. D. P. Häder and G. Jori, Elsevier Publishing Co., Amsterdam, 2001.

  42. R. G. Fairchild and V. P. Bond, Current status of 10B boron neutron capture therapy: enhancement of the tumour dose via beam filtration and dose rate, and the effects of these parameters on minimum boron content; a theoretical evaluation, Int. J. Radiat. Oncol. Biol., Phys., 1985, 11, 831–840.

    Article  CAS  Google Scholar 

  43. M. Miura, G. M. Morris, P. L. Micca, D. T. Lombardo, K. M. Youngs, J. A. Kalef-Ezra, D. A. Hoch, D. N. Slatkin, R. Ma and J. A. Coderre, Boron neutron capture therapy of a murine mammary carcinoma using a lipophilic carboranyltetraphenylporphyrin, Radiat. Res., 2001, 155, 603–610.

    Article  CAS  PubMed  Google Scholar 

  44. M. A. Rosenthal, B. Kavar, J. S. Hill, D. J. Morgan, R. L. Nation, S. S. Stylli, R. L. Basser, S. Uren, H. Geldard, M. D. Green, S. B. Kahl and A. K. Kaye, Phase I and pharmacokinetic study of photodynamic therapy for high-grade gliomas using a novel boronated porphyrin, J. Clin. Oncol., 2001, 19, 519–524.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Jori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friso, E., Roncucci, G., Dei, D. et al. A novel 10B-enriched carboranyl-containing phthalocyanine as a radio- and photo-sensitising agent for boron neutron capture therapy and photodynamic therapy of tumours: in vitro and in vivo studies. Photochem Photobiol Sci 5, 39–50 (2006). https://doi.org/10.1039/b506364g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b506364g

Navigation