Volume 128, 2005

Micellization in pH-sensitive amphiphilic block copolymers in aqueous media and the formation of metal nanoparticles

Abstract

Dynamic light scattering, potentiometric titration, transmission electron microscopy and atomic force microscopy have been used to investigate the micellar behaviour and metal-nanoparticle formation in poly(ethylene oxide)-block-poly(2-vinylpyridine), PEO-b-P2VP, poly(hexa(ethylene glycol) methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate), PHEGMA-b-PDEAEMA, and PEO-b-PDEAEMA amphiphilic diblock copolymers in water. The hydrophobic block of these copolymers (P2VP or PDEAEMA) is pH-sensitive: at low pH it can be protonated and becomes partially or completely hydrophilic leading to molecular solubility whereas at higher pH micelles are formed. These micelles consist of a P2VP or PDEAEMA core and a PEO or PHEGMA corona, respectively, where the core forming amine units can incorporate metal compounds due to coordination. The metal compounds (e.g., H2PtCl6, K2PtCl6) can either be introduced in a micellar solution, where they are incorporated within the micelle core via coordination with functional groups, or can be added to a unimer solution at low pH, where they lead to a metal-induced micellization. In these micellar nanoreactors, metal nanoparticles nucleate and grow upon reduction with sizes in the range of a few nanometers as observed by TEM. The effect of the metal incorporation method on the characteristics of the micelles and of the synthesized nanoparticles is investigated.

Article information

Article type
Paper
Submitted
04 Mar 2004
Accepted
11 Mar 2004
First published
17 Sep 2004

Faraday Discuss., 2005,128, 129-147

Micellization in pH-sensitive amphiphilic block copolymers in aqueous media and the formation of metal nanoparticles

M. Vamvakaki, L. Papoutsakis, V. Katsamanis, T. Afchoudia, P. G. Fragouli, H. Iatrou, N. Hadjichristidis, S. P. Armes, S. Sidorov, D. Zhirov, V. Zhirov, M. Kostylev, L. M. Bronstein and S. H. Anastasiadis, Faraday Discuss., 2005, 128, 129 DOI: 10.1039/B403414G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements