Issue 6, 2003

The use of isotopes to identify landfill gas effects on groundwater

Abstract

An evaluation of the source of volatile organic compounds in groundwater samples was performed at a landfill in southern California. The 3H (tritium) content of the water in leachate and water from the gas-collection system (condensed water and entrained water droplets) and the δ 13C and 14C content of the inorganic carbon in landfill gas CO2, leachate, and gas-collection system water were used to characterize the dissolved inorganic carbon (DIC) inside the landfill, while the same parameters were monitored in groundwater samples from affected monitoring wells and an unaffected well. Tritium levels from leachate and gas-collection system condensate ranged from approximately 2000 TU to over 4000 TU, orders of magnitude higher than unaffected groundwater. The average 14C content of DIC in the landfill pore-water samples was 121 pMC and the 14C content of unaffected groundwater DIC was 93 pMC, while the 14C content of the dissolved inorganic carbon in groundwater with VOC detections ranged from 105 to 119 pMC. The δ 13C of DIC in pore water was consistently above 0‰ and the δ 13C of unaffected groundwater DIC was −20.3‰, while the δ 13C of DIC in affected groundwater samples was increased from −17.3 to −13.2‰. The increases in both δ 13C and 14C in landfill gas-impacted groundwater DIC generally correlated with the number of volatile organic compounds detected and their concentrations. Based on the tritium and DIC 14C levels in leachate and water from the gas-collection system compared to those of unaffected water, significant increases in the tritium content of the water would be expected to accompany VOC detections and increases in δ 13C and 14C caused by landfill water. The results rule out landfill water as the VOC source, leaving landfill gas as the source. The identities and concentrations of the specific VOCs in affected groundwater samples varied among wells as well as between two leachate samples, ruling out the use of a VOC “fingerprint” for leachate or landfill gas to be compared to groundwater VOC concentrations.

Article information

Article type
Paper
Submitted
26 Aug 2003
Accepted
29 Sep 2003
First published
13 Oct 2003

J. Environ. Monit., 2003,5, 896-901

The use of isotopes to identify landfill gas effects on groundwater

H. B. Kerfoot, J. A. Baker and D. M. Burt, J. Environ. Monit., 2003, 5, 896 DOI: 10.1039/B310351J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements