Issue 5, 1991

Polymers with controlled molecular architecture: control of surface functionality in the synthesis of dendritic hyperbranched macromolecules using the convergent approach

Abstract

The synthesis of unsymmetrically or non-uniformly surface-functionalized dendritic macromolecules using a stepwise convergent-growth approach is described. By stepwise alkylation of the monomer unit, 3,5-dihydroxybenzyl alcohol, with unsubstituted and substituted benzylic bromides, followed by activation of the group located at the focal point, dendritic ‘wedges’ can be obtained in which there is only a single substituent such as a cyano group at the periphery. Use of only substituted benzylic bromides in the first step of growth allows fully functionalized dendritic wedges to be obtained. Coupling to a polyfunctional core such as 1,1,1-tris-(4′-hydroxyphenyl)ethane can also be done in a stepwise manner with both mono or fully substituted and unsubstituted ‘wedges’ to give dendritic macromolecules containing one, two, or three cyano groups or sixteen or thirty-two bromine atoms at the periphery of the macromolecule. These hyperbranched dendritic polymers were purified by normal flash chromatography and fully characterized by a combination of spectroscopic and chromatographic techniques. By using variations of this general scheme both the number and placement of the functional groups at the periphery of the dendritic macromolecule can be accurately controlled to afford a large variety of functionalized hyperbranched moieties.

Article information

Article type
Paper

J. Chem. Soc., Perkin Trans. 1, 1991, 1059-1076

Polymers with controlled molecular architecture: control of surface functionality in the synthesis of dendritic hyperbranched macromolecules using the convergent approach

K. L. Wooley, C. J. Hawker and J. M. J. Fréchet, J. Chem. Soc., Perkin Trans. 1, 1991, 1059 DOI: 10.1039/P19910001059

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements