Issue 5, 2021

A comparison of sizing methods for a long-term renewable hybrid system. Case study: Galapagos Islands 2031

Abstract

This research compared different sizing methods to improve the current autonomous hybrid system in the Galapagos Islands in 2031, analyzing the loss of power supply probability (LPSP). Firstly, the energy that will be consumed in islands in 2031 was obtained using artificial neural networks (ANN) with Matlab according to fundamental parameters in the design of a multilayer perceptron neural network model. Secondly, methods used for sizing the system were HOMER Pro and Simulink Design Optimization (SDO). The dynamic models of the different components of the hybrid system were created in MATLAB/Simulink. The proposed hybrid system was composed of photovoltaic (PV) and wind (WT), and lead–acid batteries, hydraulic pumping, and a diesel generator as the storage and support systems. Then, to design a sustainable system, a hybrid system was dimensioned with renewable energy sources of an appropriate size. The LPSP values obtained were below 0.09% and 0.22%, which showed that the system was optimally dimensioned. In addition, a cost analysis was carried out, and values obtained from NPC and COE according to HOMER Pro were $183 810 067 and 0.26$ per kW h, and $233 385 656 and 0.25$ per kW h and using SDO $148 523 110 and 0.25$ per kW h, $189 576 556 and 0.24$ per kW h for strategies I and II, respectively, of the proposed hybrid system. The data obtained showed that the Latin hypercube algorithm of SDO achieved better optimization compared to HOMER Pro.

Graphical abstract: A comparison of sizing methods for a long-term renewable hybrid system. Case study: Galapagos Islands 2031

Article information

Article type
Paper
Submitted
17 Jan 2021
Accepted
04 Feb 2021
First published
04 Feb 2021

Sustainable Energy Fuels, 2021,5, 1548-1566

A comparison of sizing methods for a long-term renewable hybrid system. Case study: Galapagos Islands 2031

A. Cano, P. Arévalo and F. Jurado, Sustainable Energy Fuels, 2021, 5, 1548 DOI: 10.1039/D1SE00078K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements